

The Pennsylvania State University

The Graduate School

College of Engineering

IMPROVED PAIRWISE ALIGNMENT OF GENOMIC DNA

A Thesis in

Computer Science and Engineering

by

Robert S. Harris

© 2007 Robert S. Harris

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

December 2007

The thesis of Robert S. Harris was reviewed and approved* by the following:

Webb Miller
Professor of Biology and Computer Science and Engineering
Thesis Adviser
Chair of Committee

Padma Raghavan
Professor of Computer Science and Engineering

Francesca Chiaromonte
Associate Professor of Statistics and Health Evaluation Sciences

Ra j Acharya
Professor of Computer Science and Engineering
Head of the Department of Computer Science and Engineering

*Signatures are on file in the Graduate School

 iii

ABSTRACT
Advances in DNA sequencing technology have fueled a rapid increase in the

number of sequenced vertebrate genomes, and we anticipate an explosion in the number

of genomes sequenced in the near future. Detecting similarities between genomes is a

valuable technique in discovering functional elements, and sequence alignment is the

primary tool for discovering similarities. The quality of alignments is affected by several

user-specified control parameters. The parameters are so little understood that most users

simply use default settings. We seek to change that, to have the program automatically

infer appropriate parameter choices from statistics derived automatically from the

sequences.

We introduce a program, INFERZ, which addresses part of the inference problem,

inferring substitution and gap scores according to a mathematically sound model. Further,

we explore the usefulness of iterating inferred scores to convergence. We test this process

on both simulated and actual genomic data, and show that iteration will converge in

general, but found that converged scores were not a consistent improvement.

INFERZ has a synergistic relationship with LASTZ, our improved drop-in

replacement for the widely used alignment program BLASTZ. INFERZ makes repeated

calls to LASTZ to test score sets, and LASTZ provides the user an option to have

INFERZ decide what scoring parameters to use. Compared to BLASTZ, LASTZ adds a

richer set of seeding strategy choices, supports alignment to probabilistic sequences and

reduces memory requirements. Additionally, disciplined software techniques make it a

better platform for continued experimentation.

 iv

TABLE OF CONTENTS
List of Figures .. vi

List of Tables ... vii

Acknowledgements ... viii

Chapter 1 Introduction ... 1

 1.1 Motivation ... 1

 1.2 A Brief Introduction to Sequence Alignment... 4

 1.3 Quantum Alignment ... 7

 1.4 Related Work ... 7

Chapter 2 BLASTZ-type Aligners .. 9

 2.1 Seeding and Gap-free Extension ... 9

 2.2 Chaining ... 12

 2.3 Anchoring and Gapped Extension .. 12

 2.4 Interpolation ... 12

Chapter 3 Spaced Seeds ... 14

Chapter 4 LASTZ .. 17

 4.1 Seeding Strategies .. 17

 4.2 Memory Requirements ... 19

 4.3 Overweight Seeds .. 25

 4.4 Quantum Sequence Support ... 25

Chapter 5 INFERZ ... 27

 5.1 Finite State Automaton for Neutral DNA ... 27

 5.2 Inferring Scores From Alignments ... 29

 5.3 Empirical Agreement with the FSA Model ... 30

 5.4 Inferring Scores from Sequences .. 32

 5.5 Experimental Results on Simulated Genomic Sequences 34

 5.6 Experimental Results on Actual Genomic Sequences 35

Chapter 6 LASTZ Experimental Results .. 43

 6.1 Hashed Diagonal Extent Table ... 43

 6.2 Z-step ... 43

 v

 6.3 Twin Hit Seeds .. 45

Chapter 7 Conclusions and Future Work .. 49

Bibliography ... 51

Appendix A Glossary ... 55

Appendix B Methods ... 56

 B.1 Analysis of 28-Vertebrate Alignments .. 56

 B.2 Simulated Sequence Pairs .. 56

 B.3 ENCODE Data ... 58

 B.4 Syntenic Chromosomal Data .. 59

 B.5 Receiver Operating Characteristic ... 59

Appendix C Quantum DNA Techniques .. 62

 C.1 Inferring Ancestral Quantum Sequence .. 62

 C.2 Choosing a Quantum Alphabet ... 64

 C.3 Quantum versus DNA Scoring ... 65

 C.4 DNA Ball Generation ... 66

Appendix D Linear Inference Techniques ... 68

 D.1 Linear Discriminator .. 68

 D.2 Inverse Alignment .. 69

Appendix E Seed Packing .. 71

 vi

LIST OF FIGURES
1.1 Alignment and scoring example .. 5

2.1 Alignment stages .. 10

2.2 Y-drop alignment region ... 11

3.1 Seed sensitivity distribution .. 15

4.1 Seed-word position table, linked list implementation .. 23

4.2 Seed-word position table, last/previous implementation 24

5.1 Pair finite state automaton .. 28

5.2 Gap Lengths Distribution .. 31

5.3 Ungapped Run Lengths Distribution ... 32

5.4 Iterated Scoring Inference ... 33

5.5 Scores inference convergence on simulated sequence pair 36

5.6 Scores inference performance on simulated sequence pair 37

5.7 Scores inference performance on real sequence pair ... 39

5.8 Scores inference performance adjusted for true positive rate 40

5.9 Estimating false positive rate by alignment to backward sequence 41

5.10 False positive scoring distributions ... 42

6.1 Z-step experimental results ... 46

6.2 Twin hit seed .. 47

B.1 ROC example ... 61

C.1 Quantum inference example ... 64

C.2 Quantum scoring context .. 66

E.1 Seed packing .. 72

E.2 Hard-coded seed packing .. 73

 vii

LIST OF TABLES
6.1 Hash failures in the diagonal extent table .. 44

6.2 Statistics for single hits vs. twin hits ... 48

B.1 Genome-wide alignment probabilities observed in six vertebrates 57

B.2 Alignment scores derived from observations in six vertebrates 57

E.1 Comparison of greedy seed packing to optimal ... 73

 viii

ACKNOWLEDGEMENTS
I first would like to thank the people who started me on my road to research. Jens

Gregor, my M.S. advisor some years ago at the University of Tennessee, was the first to

introduce me to the concept of sequence alignment. And Michael Thomason, another

member of my M.S. committee, who in 2001 advised me that if I was looking for a

challenge, I should return to grad school.

Second, I would like to thank my current committee members and my advisor,

Webb Miller, for giving me the opportunity, and the encouragement, to apply what I

knew about alignment to what was an entirely new field for me.

Third, I would like to thank the members of our extended group at Penn State, the

Center for Comparative Genomics and Bioinformatics. Owning little prior knowledge of

Statistics, and next to none of Biology, it was invaluable to me to be in a group with

people of mixed disciplines. Webb Miller, Francesca Chiaromonte, Wojciech

Makalowski, Ross Hardison, Laura Elnitski, David King, James Taylor, Min Mei Hou

and Kateryna Makova were especially helpful, but everybody in the group contributed to

my education. Extending beyond Penn State, I thank Adam Siepel for his work in

creating quantum ancestral sequences.

Lastly, I want to express my appreciation for the free interchange of data in this

research field. The experiments in this paper were made possible by data from RefSeq

and the ENCODE project, and the multitude of free resources at the UCSC Genome

Browser website.

.

 ix

To all my ancestors—every bit of me is a little bit of you.

Chapter 1

Introduction

1.1 Motivation

Over the past decade, advances in DNA sequencing technology have produced

whole genome sequences for an increasing number of species. This increase has spurred

the field of comparative genomics, in which sequences from many species are compared

in silico to reveal highly similar segments common to many species. A high similarity

level is indicative of the presence of conserved elements from a common ancestor. As

evolution operated along the different branches leading to the present-day species, these

elements suffered fewer mutations, maintaining more of their similarity than the genome

in general. The prevailing explanation is that such elements must be under selective

pressure, and they are expected to have important biological function.

The basic tool for identifying inter-species similarities is a sequence aligner.

Given sequences of DNA, an aligner identifies segments in one sequence that are similar

to segments in another. Similarity is defined mathematically, reflecting evolution by

rewarding nucleotide matches and penalizing mutations such as mismatches, insertions

and deletions. An aligner seeks the segments of highest similarity.

What constitutes high similarity depends on the species being compared and the

evolutionary distance between them. For example, identifiable conserved elements

between human and macaque are, on average, 90-95% identical, while in the more

distantly related chicken average identity is in the 65-70% range. In the latter case, the

signal is weaker, and it is more difficult for an aligner to distinguish real homology

(biological relatedness) from similarities that occur by chance. To achieve best

performance—balancing sensitivity and specificity when aligning to a newly sequenced

genome—the aligner’s control parameters must be tweaked. Present aligners require the

user to choose these parameters but offer little guidance on how the choices should be

made. We seek to change this, to make alignment closer to a turnkey operation by

 2

building control choices into the aligner. We want the aligner to take a quick look at the

sequences and infer good control choices before proceeding with alignment.

A method for inferring substitution scores from sequences was proposed in

Chiaromonte et al. (2002), and was used to create the default scoring matrix for BLASTZ

(Schwartz et al., 2000, 2003). Inferring gap scores that work well in practice has been

more elusive, and in practice they are set by intuition. As an example of current scoring

practices, we note the scoring used for the BLASTZ stage of multiple alignments for the

UCSC genome browser. The default scores, which were originally chosen for human vs.

mouse, are used to align human to species ranging (in distance from human) from rhesus

to mouse. For species more distant from human, ranging from opossum to lizard, a

second scoring matrix is used, reducing mismatch penalties by about 25% across the

board, with no change in gap scores. The very close chimp species has its own scoring

matrix, with much stiffer mismatch and gap penalties.

In addition to substitution and gap scores, a turnkey aligner must also make

choices for seeding strategies and score thresholds, saving the user from uninformed

choices.

In this thesis we deal only with pairwise alignment, in which only two sequences

are involved. When we use the words “aligner” or “alignment”, we mean pairwise.

Moreover, we are primarily interested in aligning DNA sequences, in which the alphabet

consists only of the four characters A, C, G and T. However, we do generalize this to

allow one of the sequences to be probabilistic profiles, which we call quantum DNA

(section 4.4).

The author has incorporated the ideas presented here in INFERZ, a program to

infer scoring matrices, and LASTZ, a replacement for the widely used BLASTZ. Further

enhancements have been made to reduce memory usage, to increase the size of sequences

that can be aligned on modern desktop workstations with 1G byte of memory. The

practical limit, for the current implementation of LASTZ on a 1G machine, is

125Mbases, about half the length of the longest human chromosome. LASTZ can

perform full chromosome-to-chromosome alignments in 2G of memory.

 3

As a result of its generality, LASTZ, in its current implementation, is about 20%

slower1 than BLASTZ. The gapped alignment stage of LASTZ is nominally faster (about

2%) and for I/O. However, these advantages are overwhelmed by the per-bp cost of

general seeding strategies, and of some memory-for-time tradeoffs. The reduced memory

usage of LASTZ provides a window of speed improvement for large sequences. On a 1G

machine BLASTZ hits the memory limit when sequences reach about a 100M bases;

memory swapping reduces performance above this point. For LASTZ this occurs at

around 125M bases.

Another goal of the author’s work was to improve the state of the source code in

BLASTZ. The original BLASTZ grew out of several years of work by three authors,

Scott Schwartz, Zheng Zhang and Webb Miller, each with different coding styles. In

addition, some of the source code was collected from parts of earlier programs, leading to

inconsistent terminology within the code. LASTZ is nearly a complete rewrite, by a

single author, with consistent style and terminology, and a greater emphasis on internal

documentation. This makes it a better platform for continued experimentation.

The author expects to continue improving INFERZ and LASTZ, but current

implementation includes the following major improvements:

INFERZ:

• Simple inference of substitution scores.

• Iterated inference of substitution scores.

• Iterated inference of gap scores.

1 All timing tests were run on a 2GHz Intel Dual iMac with 1GB, lightly loaded.

 4

LASTZ (compared to BLASTZ):

• A wider range of seeding choices, including twin hit seeds, transition-

match seeds, multiple transitions and user-definable seed patterns.

• Reduced memory requirements, allowing processing of larger sequences

on a 1G machine.

• Use of larger alphabets (up to 255 symbols) for one sequence, to support

alignment of quantum DNA sequences.

• Multiple output formats, including the widely used MAF and AXT.

• Single-author rewrite, providing a better platform for future

experimentation.

1.2 A Brief Introduction to Sequence Alignment

Sequence alignment involves finding similarities between two sequences. Given

two sequences of symbols from some alphabet

!

" , we can construct an alignment of a

subsequence of each by first inserting spaces into the subsequences so that they have the

same length, then arranging the modified subsequences as two rows, one above the other,

subject to the constraint that no column contains only spaces. Columns without spaces are

called matches or substitutions, while runs of spaces are called gaps. Figure 1.1(a) shows

an example alignment.

 Alignments provide a natural definition of the similarity between sequences.

Given a scores set {

!

sxy ,

!

sopen ,

!

s
extend

}, each match is scored as

!

s
xx

, each substitution as

!

sxy ,

each gap of length n as

!

sopen + nsextend and the alignment as the sum of its component

scores. Scores are usually positive to reward matches and negative to penalize

substitutions and gaps. Charging separate penalties for the presence and length of a gap is

called affine-gap scoring. Figure 1.1(b) shows typical scores for aligning DNA. The

similarity between two sequences is the maximum score of any alignment between them,

and alignments giving the maximum score are called optimal. It is often instructive to

 5

view an alignment as a dot-plot, which shows the positions of each aligned pair as a point

in a Cartesian space indexed by one sequence along each axis.

Given two sequences X and Y, it is possible to find the similarity between two

sequences using a dynamic programming algorithm (Smith and Waterman, 1981; Gotoh

1982). We use the notation |X| to indicate the length of X, and X[1..i] to represent the

length-i prefix of X, or an empty sequence when i is zero. Define Si,j to be the similarity

between X[1..i] and Y[1..j]. Then S has the recurrence relation (1.1) and the similarity of X

and Y is S|X|,|Y|.

(1.1)

(a) sequence 1: ...GAAAACTCTGGTAAATCTTGAGGTGAAG-----GGGAGGCAC...
sequence 2: ...GAAAAC----------CTTGAGGCAAAGATGGAGGGGGGCAC...

 A C G T
A 91 -114 -31 -123 open -400
C -114 100 -125 -31 extend -30
G -31 -125 100 -114

(b)

T -123 -31 -114 91

(c)

 Features: AA:8 CC:4 GG:11 TT:2 AG:1 GA:1 TC:1 O:2 E:15
 Scores: 728 400 1100 182 -31 -31 -31 -800 -450
 Total: 1067

Figure 1.1 Alignment and scoring example. (a) An alignment of the DNA sequences

GAAAACTCTGGTAAATCTTGAGGTGAAGGGGAGGCAC and GAAAACCTTGAGGCAAAGATGGA

GGGGGGCAC. (b) Scoring parameters. The matrix entry at row x column y is the score for

aligning an x in the first sequence with a y in the second. (c) Score calculation. The

features from the alignment are counted and multiplied by the corresponding score.

 6

A simple dynamic programming algorithm follows directly from recurrence (1.1),

with O(|X| |Y|) complexity in time and memory. Keeping traceback information for each

i,j allows the identification of an optimal alignment, with no increase in complexity.

Excluding negative values of Si,j, as in (1.2), allows us to identify similar subsequences.

(1.2)

 Memory complexity can be reduced to O(|X|) by scanning row by row and only

keeping the latest value computed in each column, along with one extra ‘lag’ variable to

keep track of the diagonal cell from the previous row. Time is still quadratic, however,

and for large problems heuristic methods are necessary to reduce time requirements.

Rather than compute values for the entire dynamic programming matrix (DP

matrix), heuristics are used to reduce the search to small regions of the matrix where the

highest similarities are more likely. While algorithms based on recurrences (1.1) and

(1.2) are guaranteed to find optimal alignments, they are not feasible for large sequences

due to the quadratic time complexity. Alignment programs must use heuristic methods to

guide the search to the small fraction of the DP matrix that contains high scoring

alignments. Heuristics incur a loss of sensitivity, thus sensitivity becomes an important

consideration in choice of heuristics.

The anchored alignments that will be discussed in section 2.3 are found using a

variation of recurrence (1.1). The alignment is required to include a fixed starting point,

but for the other endpoint we choose the maximum score anywhere in the DP matrix. The

portion of the DP matrix actually computed is also reduced.

 7

1.3 Quantum Alignment

In many problems the sequences being aligned contain a certain amount of

uncertainty at each position. For example, suppose we have the present day DNA

sequence of the same gene in several species. Though the ancestral species no longer

exists, the ancestral sequence of this gene can be inferred from the present day sequence.

One can establish the probability that each position in the ancestral sequence contained a

particular nucleotide.

One solution is to discard the probabilities after inference and project the ancestral

sequence to the most likely bases. Instead, we permit sequences that represent a base as a

probability distribution over the symbols A, C, G, and T. To simplify discussion, we have

coined the term quantum nucleotide (shorthand q-DNA) for such a distribution, in

analogy with the field of quantum mechanics2, and quantum sequence (shorthand q-

sequence) for a sequence composed of q-DNA3.

With an appropriate scoring scheme, quantum sequences can be aligned to DNA

sequences or to other quantum sequences. Recurrence (1.1) is still applicable. However,

the heuristic methods used for large problems often take advantage of the small alphabet

of DNA, and must be altered to accommodate the infinite quantum alphabet. A truly

infinite alphabet presents additional challenges; for the sake of efficiency we project

quantum bases onto a finite alphabet that allows us to implement sxy of recurrence (1.1)

by a table lookup. This introduces an additional problem of how best to choose the

alphabet.

1.4 Related Work

Sequence alignment has been studied since the 1960s, originally motivated by

document comparison and text queries, with eventual adoption for comparison of protein

and DNA sequences. Early seminal work is due to Levenstein (1966), Needleman and

2 In quantum mechanics, measurable properties such as energy or position (whether continuous or discrete)
are represented by probability distributions rather than definite values.

3 The author realizes that there are many names in the literature for the same concept, among them
profiles, weighted sequences, and probabilistic DNA. But no term has won exclusive use, and many
suffer from easy confusion with other concepts.

 8

Wunsch (1970), Smith and Waterman (1981) and Gotoh (1982). A recent survey of the

state of the field is provided by Batzoglou (2005).

Alignment of probabilistic DNA sequences has recently become a topic of interest

in the field. Hudek (2005) aligns sequences of ambiguous DNA inferred from multiple

alignments, but discards probabilities from the sequences. Flannick and Batzoglou (2005)

reduce a multiple alignment to a sequence of probabilistic profiles over {A,C,G,T}, but in

contrast to our research also include a probabilistic gap at each position, and align to the

sequence of most-probable bases rather than the probabilistic sequence. In the MAVID

multiple aligner, Bray and Pachter (2004) infer probabilistic sequences similar to ours,

but reduce them to sequences of most-probable bases prior to alignment.

 9

Chapter 2

BLASTZ-type Aligners

BLASTZ (Schwartz et al. 2003) is a pairwise DNA sequence aligner originally

patterned after Gapped Blast (Altschul et al. 1997; Zhang et al. 1998). Initially designed

as a piece of the PipMaker server (Schwartz et al. 2000), it has received widespread use

in the scientific community, serving, for example, as the first stage in generating whole

genome alignments for the UCSC Genome Browser (http://genome.ucsc.edu). A major

contribution of BLASTZ was a reduction in memory requirements, allowing sequences of

a few million base pairs to be aligned. As longer sequences have become more prevalent,

BLASTZ has again reached the point of being constrained by memory.

What follows is a simplified presentation of the program. The actual program has

many parametric choices, which we will discuss in later sections. BLASTZ is optimized

to preprocess one sequence (which we call sequence 1) and then align several queries to

it (we will use sequence 2 or query interchangeably). The algorithm consists primarily of

the following stages: seeding, gap-free extension, chaining, anchoring, gapped extension

and interpolation. Both BLASTZ and LASTZ include a few other features, such as

dynamic masking, which will not be discussed in this thesis.

2.1 Seeding and Gap-free Extension

 The seeding stage identifies short near-matches (seed hits) between sequence 1

and 2. In general, a seed pattern/rule determines what constitutes a near-match of some

length L, but for this discussion it is enough to think of a seed hit as a perfect match of

two L-mers. More sophisticated seeding strategies are used in practice, discussed in

Chapter 3 and section 4.1.

A preprocessing pass parses sequence 1 into overlapping seed words of length L.

Each word is converted to a value, called the packed seed word (usually requiring fewer

bits than the seed word) according to the seed pattern (discussed in more detail in Chapter

3). These (seed, position) pairs are collected in a table. Conceptually, the table is a

 10

mapping from a packed seed value to a list of the sequence 1 positions where that seed

occurs. The seed word position table is one the major space requirements of the program,

and we discuss design choices in section 4.2. Both time and memory required for seeding

can be decreased by using sparse spacing. Instead of storing a seed word for every

position, positions are stored only for multiples of z (the z-step). Large values of z (e.g.

z=100) incur a loss of sensitivity, at least at the level of seed hits. However, to discover

any gapped alignment we only need to discover one seed hit in that alignment (of many),

so the actual sensitivity loss is small in most cases. Section 6.2 discusses the effect of z-

step on the end result.

To locate seed hits, the query sequence is then similarly parsed. Each query seed

is used as an index into the position table to find the sequence 1 positions that ‘hit’ that

 (a) (b)

Figure 2.1 Alignment stages. (a) Seed hits and HSPs. Heavy lines are seed hits, short gap-

free near-matches. Seed hits are extended to create HSPs (thin lines). Seed hits with no

HSP had low scoring extensions. (b) Anchors and gapped alignment. Anchors (blue dots)

are single points in highest scoring window of each HSP. Anchors are extended to form

gapped alignments (gaps in red). Anchor shown without alignment had low scoring

extensions which were discarded.

 11

seed. As each seed hit is found, it is extended without allowing gaps to determine

whether it is part of a high-scoring segment pair (HSP). The hit is extended along the

diagonal4 in both directions, using the score values

!

sxy to accumulate the score of the

extended match. In each direction, the extension is stopped whenever a segment with a

large negative score is encountered (negative of the ‘x-drop’ threshold). These negative

scoring ends are then trimmed. If the resulting score meets the ungapped alignment score

threshold (K) it is an HSP and is kept for further processing. Matches at do not meet the

score threshold are discarded. An additional filtering step eliminates hits with low

entropy. An example of this process is shown in figure 2.1(a).

 Usually an HSP will contain several seed hits. Extending each of these hits would

result in the same HSP several times. This is prevented by rejecting seed hits that overlap

previous extensions (even extensions that failed to produce an HSP). Hits along any

diagonal are processed in increasing order (see the discussion of the seed word position

table in section 4.2). Thus we only need to keep track of how far we have progressed

Figure 2.2 Y-drop alignment region. The boundaries of the region are points scoring

much lower than the possible maximum.

4 A diagonal is a set of DP cells (i,j) that have a constant difference i-j. The diagonal is often referred to
by this difference.

 12

along each diagonal; if a new hit occurs to the left of progress on its diagonal, we can

quickly discard it. The storage of this diagonal extent table is also a major space

consideration, and will be discussed further in section 4.2.

2.2 Chaining

The chaining stage finds the highest scoring series of HSPs in which each HSP

begins strictly before the start of the next. All HSPs not on this chain are discarded. This

is useful when elements are known to be in the same relative order in the query as in

sequence 1. Briefly, the chaining algorithm is an example of sparse dynamic

programming. It processes the HSPs in order along sequence 1, building chains by adding

the next HSP to the best previous viable chain.

2.3 Anchoring and Gapped Extension

Every remaining HSP is reduced to a single point to be used as an anchor for

gapped alignment. A constant-width window is slid across the HSP and the midpoint of

the highest-scoring window is chosen as the anchor.

The anchors are then processed in order of the score of their HSP (highest score

first). One-sided extension is performed in both directions from the anchor point, the two

resulting alignments are joined at the anchor, and if the score meets the gapped alignment

score threshold (L) it becomes an alignment in the output file. One-sided extension is

computed per recurrence (1.1), beginning at the anchor and ending at the highest scoring

point. The portion of the DP matrix considered is reduced by disallowing low-scoring

segments (Zhang et al., 1998); wherever the score drops further below the known least

possible maximum than the y-drop threshold, the DP matrix is truncated and no further

cells are computed along that row. An example of the resulting search range is shown in

figure 2.2, while figure 2.1(b) shows an example of the overall gapped alignment results.

2.4 Interpolation

Once gapped extension has been performed, it is not uncommon to have regions

leftover in which no alignment has been found. In the interpolation stage we repeat all

 13

previous stages, in these leftover regions, at a higher sensitivity. For example we could

use a lower weight seed or a lower scoring threshold. Using such high sensitivity from

the outset would be computationally prohibitive, but is feasible on the smaller, leftover

regions.

 14

Chapter 3

Spaced Seeds

As noted earlier a common heuristic is to focus alignment search in the vicinity of

seed hits, short matches or near matches. The seed hit is evidence of a larger similarity

between the sequences. Early aligners commonly required exact matches for seed hits.

However, allowing some mismatches in seed hits can increase sensitivity with no loss in

specificity (Ma et al. 2002).

To understand how sensitivity is improved, consider the following example.

Suppose we have a 20 bp homologous sequence that has undergone substitution

mutations, but no insertions or deletions, to the extent that each base has only a 70%

chance of matching in the present day sequences (pmatch = 70%). If we require an exact

match of 5 consecutive bases for a seed hit, then we must have such a match somewhere

among the 20 bp or we will fail to discover this homology. The chance of having at least

one 5-bp match is only 73%.

Now suppose instead that our seed hit requires 5 matching bp, but allows one

mismatch between the 3rd and 4th match. We describe this seed pattern as 111011, with

the 1s representing required match-positions and the 0 representing a don’t-care position.

This pattern has the same specificity as the exact match (the expected number of hits is

same), but the chance of it occurring at least once among the 20 bp is 80%. The weakness

of the first seed is due to the fact that, as we advance along the sequence with the first

seed, any mismatch knocks us all the way back to the beginning of our pattern, 5 steps

from success. With the second seed, a mismatch after 3 or 4 matches simply bumps us

back a couple steps; we’re still only two steps away from success.

We call a seed pattern containing don’t-care positions a spaced seed5. The number

of positions in the seed is called its length L, and the number of required matches is its

weight W; we call such as seed a W-of-L seed. Any spaced seed will have higher

5 In the literature, the term “seed” is often used interchangeably for a seed pattern, seed word or seed hit.

 15

sensitivity than an exact match seed of the same weight, provided the homology is long

enough and/or pmatch is high enough. However, for a given homologous length h, the

weight-W exact match can ‘hit’ in h+1-W positions, while the (L,W) spaced seed can

only hit in h+1-L. For h shorter than some cutoff, the exact match is more sensitive. This

makes ‘light’ seeds, with a large proportion of spaces, less useful.

The sensitivity of a seed has a complicated relationship to its pattern. Two similar

seeds, having the same length and weight but disagreeing only in the position of one

don’t-care position, can have much different sensitivity. Further, sensitivity depends on

the evolutionary substitution rate of the sequences. One seed may be better for a 95% rate

while another may be better for 70%.

A seed’s sensitivity can be computed by transforming its pattern into a

deterministic finite automaton that accepts strings containing that pattern, then computing

the probability that a random string (according to some evolutionary model) will be

accepted (Buhler et al., 2003). Some seed(s) will be optimal, having the highest possible

Figure 3.1 Seed sensitivity distribution. Distribution of the probability of discovering a 64

bp homology with 70% identity for all 12-of-19 seeds. The median seed has sensitivity at

least 94% of the optimal (0.355), and the 90th percentile is at least 97% as sensitive.

 16

sensitivity for a particular model; Buhler has studied optimality extensively under a

variety of evolutionary models.

Computation of a single seed’s sensitivity appears to be exponential in the number

of don’t-care positions, and the number of patterns grows exponentially with the length.

Finding optimal seeds by exhaustive evaluation is computationally impractical, and the

result is a seed that is only known to be optimal for a particular evolutionary model. But

many seeds are close to optimal (see figure 3.1). So the more computationally efficient

strategy of trying several random seeds and picking the best may be adequate for most

uses.

BLASTZ makes use of a specific 12-of-19 seed based on seed shown to be

optimal for 64 bp homologies with 70% identity (Ma et al., 2002; Schwartz et al., 2003).

The user may also choose a 14 of 22 seed or an exact match seed of any length. Both

seeds also allow a transition mismatch in any one of the seed’s match positions,

increasing sensitivity.

We discuss additional seeding strategies in section 4.1.

 17

Chapter 4

LASTZ

With the rapid acceleration of sequencing technologies, the effort required to tune

BLASTZ for each new genome sequence has become more of a nuisance. Further,

choosing appropriate tuning parameters still seems more art than science, and the

necessary insight is in the hands (or minds) of a few. A major goal of LASTZ is to

change that, to have the program derive suitable tuning parameters from the sequences

themselves. Toward that end, LASTZ acts as a tool bench for experimenting with

alignment strategies.

LASTZ supports all the capabilities of BLASTZ, but extends them, providing a

richer variety of seeding strategies, reducing memory requirements and aligning quantum

sequences.

4.1 Seeding Strategies

The run time of BLASTZ-type aligners is greatly affected by seed specificity.

Low specificity equates to a high number of false seed hits, requiring extra computation

during gap-free extension. Further, the number of false seed hits scoring high enough to

become HSPs increases the run time during gapped extension. Many seeding strategies

have been proposed in the literature, and LASTZ adds support for user-specified seed

patterns, transition-match positions, half-weight seed patterns, double transitions, and

twin hit seeds.

User-specified seed patterns. To facilitate experimentation with seed patterns,

LASTZ allows the user to directly specify the pattern as a string of 1 (match), 0 (don’t-

care) and T (transition-match) positions.

 18

Transition-match positions. A transition-match or T-position allows a match or

transition mismatch, but not a transversion6. Transition-matches were introduced in the

literature by Sun and Buhler (2006)7 and were further studied by Zhou and Florea (2007).

Because of its effect on specificity, a T-position contributes the value of 1/2 position to

seed weight.

Half-weight seed patterns. LASTZ adapts the idea of Hou et al. (2007), allowing

patterns restricted to transition-match and don’t-care positions. An additional filtering

stage is added between seed hits and gap-free extension. The number of matches over the

length of the seed word must meet a specified lower bound, and the number of

transversions must obey a specified upper bound. Note that hits for a half-weight seed

without don’t-care positions will not contain any transversions.

The main advantage of a half-weight seed is that it allows a longer seed length

without using additional memory (see Appendix E). Further, it allows more general

mismatch cases than simple spaced seeds. For example, the 12-of-19 seed

1110100110010101111 allows up to 7 mismatches but only in specific positions. The 19-

of-19 half-weight seed can be specified to allow 7 mismatches in the seed word,

regardless of position, and uses less memory than the 12-of-19 seed.

The mathematical properties of half-weight seeds have yet to be fully explored. It

appears that a length 2L half-weight seed, with no spaces, should be more sensitive than a

length L exact match seed, and this is supported by some experimental results in Hou et

al. (2007). Half-weight seeds were implemented to support those experiments, but have

not been investigated further. Ideally, we would like to be able to show that a spaced half-

weight seed is more sensitive than the equivalent seed with 1-positions replacing the Ts.

The name half-weight comes from the fact that, since the seed contains only T-

positions and don’t-cares, its weight is half that of the equivalent seed with 1s instead of

Ts.

6 A T-position should not be confused with the allowance of a single transition in a match-position. The
former allows any number of transitions, but only in specific positions. The latter allows only one, but in
any match-position.

7 The author's own implementation of T-positions dates to late 2004, the same time frame in which Sun and
Buhler first submitted their 2006 paper.

 19

Double transitions. LASTZ can allow up to two transitions among the match-

positions in a seed. The computational cost is a factor of about W/2 when scanning the

query during seeding.

Twin hit seeds. For sequences with high similarity, BLASTZ seeding strategies

are too sensitive, resulting in too many seed hits. LASTZ allows the requirement of two

nearby hits on the same diagonal before gap-free extension is performed. The user can

specify the range of the gap length between the seeds (the gap may also be negative,

indicating overlapping seed hits).

Section 6.3 describes experimental results for twin hit seeds.

Floating-point scoring. A separate build of LASTZ treats scores as floating-point

values. This was useful in studying iterative scoring inference, without having to worry

about truncation effects.

4.2 Memory Requirements

One of the author’s goals for LASTZ was to reduce memory requirements to

increase the size of sequences, and the weight of seeds, that could be used within the

memory constraints of a desktop workstation with 1 GB memory. The primary

components with potential for consuming memory are the two sequences, the seed word

position table, the diagonal extent table, the dynamic programming array, and traceback.

For convenience in this discussion, we define the following terms, and consider a

large chromosome to be 250M bases.

L1,L2 = length of sequence 1 and 2.

W = seed weight

Z = z-step

V = fraction of ‘viable’ seed words in sequence 1.

A seed word is viable if it contains no masked or ambiguous bases8. It is not

uncommon for V to be around 50%. For example, in the 44 ENCODE regions (ENCODE

8 Genomic DNA contains many repeat elements—segments that have been replicated at some point in the
past. A common practice in the preparation of genomic DNA prior to wide scale alignment is to identify
repeats and “mask” them by using lowercase a, c, g and t. In addition, sequences often contain bases for

 20

Project Consortium 2004), V ranges from 38 to 63% in human, with only one region

below 45%.

Sequences. (memory required: 2L1+2max(L2)). Both sequences are stored

internally at one byte per base. Of multiple queries, only the current query is resident. A

second copy of each sequence is stored, giving the sequence in reverse order to save

gapped alignment the concern of directionality. For two large chromosomes, these total

1G. There is opportunity for savings here, at the expense of speed. First, the reversed

sequence copies could be eliminated by having four different copies of the gapped

alignment routine (one for each combination of sequence direction). This would require

no run-time cost but would incur a cost in source code maintenance. Second, DNA

sequences could be packed four bases per byte after the seeding stage. While building the

position table, we need access to masking information in the sequence but if sequence

input parsing was more tightly coupled with position table building this could be

accomplished with a small constant sized buffer, building the position table and packed

sequence at the same time. Similarly, when scanning sequence 2 for seed hits, we also

require masking information, but could build the packed sequence during the seed hit

scan.

Both sequences are needed for gap-free and gapped extension, and having them in

packed form would slow down both processes. Additionally, sequence 2 may require 8

bits per symbol if it is a quantum sequence. For these reasons, we chose not to pack the

sequences.

However, for overweight seeds (section 4.3) we do construct a packed version of

sequence 1, requiring an additional L1/4 bytes. This is another tradeoff of memory for

speed. Having the packed version resident saves us the time of repacking each seed word

to resolve a seed hit.

Seed word position table. (4(4W+(L1/Z)). The position table must provide a

mapping from a seed word to a list of the positions where that word occurs in sequence 1.

For large seeds and/or long sequences, the table can be very large. Several schemes were

hard-to-sequence regions where the actual nucleotides are not known. These ambiguous bases are
represented by N. LASTZ does not allow masked or ambiguous bases as part of seed hits.

 21

considered, but in the end we chose between two options, which we call linked list and

last/previous. Last/previous is the scheme used in LASTZ, but we will describe both

here.

The linked list scheme is shown in figure 4.1. A pointer table indexed by seed

word contains pointers to linked lists. Each list element contains an index into sequence 1

and a pointer to the next element. Elements are allocated on an as-needed basis (in

blocks9) and only seed words positioned at multiple of z are stored, so only VL1/Z list

elements are needed. On a 32-bit machine, the pointer table requires 4x4W and the list

elements 8VL1/Z. On a 64-bit machine, pointers are 8 bytes. List elements could

conceivably be stored in 12 bytes, but many compilers (including the widely used gcc)

store them in 16 bytes. So the requirements double, to 8x4W+16VL1/Z.

The last/previous scheme is shown in figure 4.2. A position table (Last) indexed

by seed word contains the index into sequence 1 of the last position containing that seed

word. A second table (Previous), indexed by sequence position, provides the position

of the ‘previous’ occurrence of the same seed word10. A zero is used to terminate the

chain11. Since only seed words positioned at multiples of z are stored, the table contains

space only for those positions, and contains L1/Z entries. Since the tables store sequence

positions instead of pointers, memory requirements are the same regardless of processor

word size. Last requires 4x4W and Previous 4VL1/Z.

For highly masked sequences the linked list version will use less memory. On a

32-bit machine, the break-even point is V=50%, which is a typical value for human

sequences. On a 64-bit machine the linked list version will use less memory only when

V<=(1/4)-(4^W-1)(Z/L1) <= 25%.

Unfortunately, neither method has good cache behavior. As we parse each

sequence into seed words, the accesses to the pointer table, or to Last, have no locality.

9 The overhead (both memory and time) for allocating list elements one-at-a-time can be extremely
detrimental to performance.

10 More formally, previous[i] = max j such that seedword(sequence1[j]) = seedword(sequence1[i]).
11 Internally, we actually store the position of the end of the seed word rather than the start, so zero is never

used for a valid seed word.

 22

Nor do accesses to Previous exhibit locality. For the linked list scheme, a post

processing step on the list elements, following construction of the table, could organize

them to be more cache friendly while processing the second sequence.

A useful side effect of both schemes is that, since the query sequence is scanned

in increasing order, hits along any diagonal are also processed in increasing order. This

facilitates the implementation of the diagonal extent table.

Other data structures for locating seed hits have been presented in the literature.

Gusfield (1997) applies a suffix tree to the problem of finding exact substring matches

between two strings. While a suffix tree leads to an O(n) solution for exact matches, the

space requirements can be daunting. Typical implementations require 20 bytes per

sequence character, according to Lippert (2005)12. The Burrows-Wheeler transform

(Burrows and Wheeler, 1994) can reduce space to 2.5 bits per sequence character

(Lippert, 2005), and provide exact matches in O(n log n) time. Neither structure appears

suitable for finding all partial matches similar to spaced seeds. While Gusfield (1997)

presents O(n) solutions to several partial match problems, these all involve finding only a

single partial match. Lippert (2005) gives a partial match method, but it involves

searching for O(2k) matches, where k is the number of mismatches allowed.

Cameron (2006) stores the equivalent of the seed word position table in a

deterministic finite automaton (DFA). The DFA has space comparable to our

implementation but has much better cache behavior. However, the DFA concept does not

work well for spaced seeds. It takes advantage of the fact that number of different ‘next’

seed words as we scan the sequence is small. For exact matches the number of possible

next words is only four. For spaced seeds it is much higher; as we move to the next

position, many positions that were spaces in the previous seed word are now filled with

characters, and each of these has four possibilities. Z-steps aren’t DFA friendly, for

similar reasons.

Diagonal extent table. (fixed 0.75M). As part of the gap-free extension stage

(section 2.3) we maintain an array of the extent of expansion along each diagonal. This

12 Suffix tree space is O(n log n), so Lippert’s claim of 20 bytes per character, without mention of a specific
sequence length, is curious.

 23

allows us to quickly filter out seed hits that have been covered by the expansion of a

previous hit. If twin hits are required, a second array gives the start position of the latest

series of nearby hits on each diagonal. A third array is used to resolve hash collisions, as

will be explained shortly.

A direct implementation of this data structure (for which collision resolution

would be unnecessary) would require 8(L1+L2) bytes, or 4Gbytes for large

chromosomes13. Instead, we hash diagonals to 16-bit values14. This reduces memory

requirements to 12x216 = 0.75Mbytes (after we add the third array to detect hash

collisions).

Experimental results regarding the rate of hash collisions and their effect on

resulting alignments are given in section 6.1.

Figure 4.1 Seed-word position table, linked list implementation. Packed seed word selects

linked list containing positions of matches in sequence 1.

13 If twin seeds are sacrificed, only 2G bytes would be required, still well above our target budget.
14 The hash function simply uses the least significant bits of the diagonal.

 24

Dynamic programming array and traceback memory (80M). The DP array

memory used during gapped extension is greatly reduced, compared to a straightforward

implementation of (1.1), by constraining to the y-drop region. Further, scores are only

saved for the current row being processed, so the number of DP cells needed is the

longest row slice through some y-drop region. Memory is allocated on an as-needed

basis, in increments of about 16K. This is not a significant memory consumer because,

for default settings, the longest row slice is typically ≈ 2,000 cells, or about 32K.

A larger concern is traceback memory. In order to reconstruct an optimal

alignment, we need to store traceback information over the entire y-drop region for a one-

sided gapped extension. These are stored as one byte per cell. For default settings, the

average y-drop region is less than 1 million cells, and the largest less than 25 million. The

user can specify the amount allocated. By default 80M bytes are allocated, which will

cover 80 million cells. A traceback memory shortfall causes truncation of a gapped

Figure 4.2 Seed-word position table, last/previous implementation. Packed seed word

selects last position of a match in sequence 1. That position indexes position of previous

match, additional matches are found by following the series of positions.

 25

extension. This happens only when sequences are very similar, in which case it is likely

that another anchor will allow us to pick up the rest of that alignment.

Additionally, we maintain an array of indexes to where each row begins (in the

traceback array). Indexes into the traceback array are used rather than pointers to save on

64-bit machines. The index array is allocated as needed, expanding in leaps of 512K (128

thousand rows). For default settings, fewer than 20,000 rows are usually required.

4.3 Overweight Seeds

Memory requirements for the seed word position table depend on two factors, the

number of positions stored in the table and the weight of the seed pattern. An increase of

1 in seed weight quadruples both the number of possible packed seed words and the bytes

needed for the table indexed by them. On a machine with 1G of memory, a practical

weight limit is 13. A weight-14 seed requires 1G just for this table, leaving no resident

memory for anything else. Even on a machine with 8G, a weight-15 seed uses half the

resident memory.

As another tradeoff of memory for time, LASTZ allows the user to specify a limit

Wmax on the portion of the seed used to index the table. Seeds heavier than that limit are

considered overweight, and require additional processing to resolve seed hits. In effect,

the seed packing function becomes a hash function. The 2L bits of the seed word are

packed to 2Wmax bits instead of 2W. Matches in the seed word position table are no

longer guaranteed to be seed hits. Each hit in the seed word position table is then resolved

by comparing the seed word in sequence1 with that in sequence 2. To facilitate this

comparison, we construct a packed version of sequence 1.

4.4 Quantum Sequence Support

As described in section 1.3, it is often desirable to deal with DNA sequences that

contain uncertainty, which we call quantum sequences. LASTZ can align a quantum

query sequence to a DNA sequence. Externally, the quantum sequence must be reduced

to a finite alphabet

!

"Q (maximum 255 symbols) and an appropriate |

!

"Q|x4 substitution

scoring matrix must be provided. Techniques for performing the reduction and creating

the scoring matrix are discussed in Appendix C.

 26

 The quantum sequence and scoring matrix comprises everything LASTZ needs to

know about the sequence. Specifically, it does not know anything about the probabilities

represented by any symbol15. The standard alignment recurrence (1.1) is unaffected by

the presence of quantum DNA on one side of the equation. All that is required is a

scheme that provides scores for substitution and gaps. Further, any algorithm that

computes alignment scores based on that recurrence will still work for quantum

alignment. Thus LASTZ is able to use the same algorithms that it uses for gap-free

extension, chaining, anchoring, gapped extension and interpolation when aligning DNA.

However, the seeding technique used in DNA alignment takes advantage of the small 4-

character alphabet, creating a table indexed by 4W seed words. A table of all |

!

"Q|W seed

words would be prohibitive. We can still make use of a table of words from the DNA

sequence, but we won’t have words in the quantum sequence that directly match them.

For quantum sequences, LASTZ modifies the anchor finding stage as follows. It

builds the usual table of seed words for (DNA) sequence 1. The (quantum) query

sequence is parsed into overlapping q-words of length L. Each q-word is collapsed to W

symbols (removing spaces if a spaced seed is being used). For each q-word it generates

the ball of DNA words that score above some threshold (irrespective of whether the

words exist in the DNA sequence). Then it looks up the locations of those words in the

DNA sequence and proceeds as for DNA-to-DNA alignment. The ball generation

algorithm is described in C.4.

15 The mapping from symbol to probability can be provided, to enhance certain output formats.

 27

Chapter 5

INFERZ

Given two long sequences of DNA, how can we assign ‘appropriate’ scores for

matches and penalties for substitutions, gap open and gap extend? To answer this, we

must have a model of the evolutionary process that mutated a common ancestor into the

two sequences, and we must have a means of evaluating the inferred scores. We discuss

the model in the rest of this chapter and from it derive a method for inferring scores. This

method is encapsulated in the INFERZ program.

For evaluation, we treat the aligner as a classifier, classifying aligned bases, and

use statistics based on the receiver operating characteristic (ROC, section B.5). ROC in

turn requires values for true (TP) and false positive (FP) rates. For alignments of real data

the correct alignment is rarely (if ever) known, so exact TP and FP rates aren’t known.

We addressed this is two ways. First, we test our inference method on simulated data for

which the correct alignments are known. Second, for real data we use an estimate of FP

derived from the alignments themselves, discussed in section 5.6.

5.1 Finite State Automaton for Neutral DNA

As per Durbin et al. (1998) we model a homologous sequence pair of neutral

DNA by a three state Finite State Automaton (FSA) shown in figure 5.1(a). The FSA

emits homologous pairs of bases in state H, and gaps in states IX and IY. It is equivalent to

an evolutionary model in which a common ancestral sequence evolved into a pair of

sequences by means of independent mutations. Substitutions occur according to

!

pxy .

Insertions occur with the same probability

!

popen at any position in either sequence, and do

not overlap. The insertion process can stop independently at each base, continuing with

probability

!

p
extend

, resulting in a geometric distribution of lengths. Deletions are treated as

insertions in the other sequence. We address the validity of this model in section 5.3.

 28

The model relates directly to the affine-gap alignment algorithm. Given

observations from alignments we can infer alignment scores under this model. Inferring

directly from the model, we can use log-odds16 scores from each observed probability.

We first consider the score of a length n gap and ignore base content, reducing the FSA to

the gap-only model in figure 5.1(b). Since the model requires every gap to be followed by

at least one step in H, we also include that step. The score for this elongated gap,

consisting of n steps in I and one in H, should be

(5.1)

while the score for any other H event should be

 (5.2)

For scores suitable for recurrence (1.1) we must have

 (5.3)

From this we see that recurrence (1.1) charges a penalty for one extra extend, and scores

the gap-terminating event the same as any other H-event. Making appropriate

adjustments to

!

sopen , the proper inferred scores are

 (a) (b)

Figure 5.1 Pair finite state automaton. (a) Full model emitting pairs. (b) Simplified gap-

only model.

16 When we give specific log values we use base 2 logarithms.

 29

(5.4)

Incorporating base content, we include log odds scores for the pair emitted in the H

event. Using the approach of Chiaromonte et al. (2002), we have

(5.5)

Note that the formula for

!

sxy in (5.5) differs from the formula in Chiaromonte et

al. by the addition of a score for remaining in state H. Since Chiaromonte et al. did not

consider gaps,

!

popen = 0 in their model,

!

log(1" 2popen) = 0, and (5.5) is consistent with

their result.

We could also incorporate base content in gap scoring. However, there is no

accommodation for doing so in recurrence (1.1). Effectively we are modeling base

distribution in gaps as uniform.

5.2 Inferring Scores From Alignments

Given a collection of alignments , we can estimate event probabilities and apply

(5.5) to infer alignment scores. Defining these alignment statistics

= number of alignments.

H = number of ungapped columns (number of steps in FSA state H).

I = number of gapped columns (number of steps in FSA state IX or IY).

gaps = number of gaps.

xy = number of ungapped columns with x for sequence 1 and y for sequence 2.

x• = number of ungapped columns with x for sequence 1.

•y = number of ungapped columns with y for sequence 2.

We can estimate the necessary quantities for (5.5) thus:

 30

(5.6)

(5.7)

(5.8)

5.3 Empirical Agreement with the FSA Model

Under the simplified gap-only FSA, the distribution of gap lengths should be

geometric. This is a shortcoming of the model, as there is much empirical evidence that

suggests gap lengths in vivo follow a power law distribution (Zhang and Gerstein, 2003).

Genome-wide observations of in silico alignments between human and six vertebrates

(section B.1) show gap length distributions somewhere between power-law and

geometric, as is apparent in figures 5.2(a) and (b). The underlying alignment algorithm

used affine-gap scoring, and it appears it has pushed the observed distribution toward

geometric.

Though this is a serious deficiency, affine-gap scoring is much faster to compute

than more general schemes, and this is especially important for large-scale alignments.

The deficiency says nothing about the algorithm’s ability to locate homology on a broad

scale, only that its ability to accurately place gaps is questionable. The program could be

 31

augmented by post-processing the discovered alignments using a more realistic gap

model (Cartwright, 2006).

The model also predicts that ungapped run lengths (inter-gap distances) should be

geometric. Figure 5.3 shows two disagreements with observed run lengths in silico. First,

there is an abrupt drop-off in the number of very short runs (in dog, this occurs for runs

shorter than 10 bp, for macaque 30 bp). This is an alignment artifact; recurrence (1.1)

discourages nearby gaps and will find a higher scoring alternative. Second, macaque has

a greater number of short runs (other than very short), suggesting the true distribution is

closer to a power-law.

The scarcity of very short runs demonstrates a failing of the premise of basing

alignment on maximum parsimony, finding an optimum under some model. Parsimony is

imperfect. With a large enough sample, the actual evolutionary history will contain

 (a) (b)

Figure 5.2 Gap Lengths Distribution. Gap lengths in medium G+C content regions of

human aligned to dog. (a) Comparison to geometric distribution (dashed red line) shows

the presence of more short gaps than would be expected. (b) Comparison to power law

distribution (dashed red line) shows the presence of fewer short gaps and long gaps than

would be expected.

 32

events that are not the most probable. Holmes and Durbin (1998) and Lunter et al. (2007)

have done seminal work measuring the expected incorrectness of maximum parsimony

aligners, but this line of research is still limited.

5.4 Inferring Scores from Sequences

Given two sequences (as opposed to alignment examples), how should we apply

(5.5) to infer scores? The solution in Chiaromonte et al. (2002) is to align using

!

±1

substitution scores and infer from the resulting alignments. Gaps were not addressed, so

alignment was halted after gap-free extension. Inferring scores from alignments created

by a recurrence (1.1) aligner raises questions of circularity. The process can be viewed as

a function that maps one set of starting scores (chosen to create the alignments) to

 (a) (b)

Figure 5.3 Ungapped Run Lengths Distribution. Lengths of ungapped runs in medium

G+C content regions of human aligned to (a) dog and (b) macaque, compared to

geometric distribution (dashed red lines). Both distributions show a abrupt drop-off of

very short runs. Disregarding short runs, the distribution for dog is a close fit to a

geometric, while for macaque there are still more short runs than would be expected.

 33

another (inferred from the alignments), with the sequences as a fixed control variable. To

what extent are the inferred scores affected by the choice of starting scores?

Chiaromonte et al. (2002) suggested that inferred scores might be improved by

iterating the process, but left this as an open question. In fact the idea raises several

questions. It is not immediately clear whether the iterated process will converge. If it

does, will it converge to the same answer independent of the starting scores? Will the

converged scores be the ‘correct’ scores (according to some model), and do the correct

scores provide the best alignment results?

We tested iteration on simulated DNA data and on real data. Simulated data was

generated according to the pair FSA model, and for a variation on that model that

includes power law gap distributions (see section 5.3). For real data we used data from

the ENCODE project.

We included gap score inference but chose a two-phase approach. We first

iterated substitution scores inference until convergence, then used those substitution

scores while iterating gap scores inference. The process is shown in figure 5.4. In order to

avoid round off effects, we used floating-point scoring.

1 Start with substitution scores of

!

±1

2 Find high scoring gap-free alignments, low identity

3 Infer substitution scores

4 Repeat (2 and 3) to convergence, orbit or divergence

5 Assume initial open and extend scores based on max substitution

score

6 Find gapped alignments

7 Infer gap scores

8 Repeat (6 and 7) to convergence, orbit or divergence

Figure 5.4 Iterated Scoring Inference. Substitution scores are iterated from a starting

point of

!

±1 match/mismatch to convergence. Initial gap scores are assigned relative to

smax, and iterated to convergence.

 34

5.5 Experimental Results on Simulated Genomic Sequences

We applied the iterated inference procedure of section 5.4 to 135 simulated

sequence pairs (section B.2). Of interest was whether the process would converge and if

so whether the resulting scores matched the model scores.

Figure 5.5 shows typical gap score convergence for one of the simulated pairs.

Twelve starting points were tried. Using the converged substitution scores, iteration for

gaps scores was started at one of the 12 starting points and run to convergence. In all

twelve cases convergence (to within 4 digits) occurred within 6 iterations, and all

converged to the same point (to 6 digits). However, the convergence results did not match

the model scores. sextend was essentially correct, but sopen was about 20% too large.

These results are typical for the 54 sequence pairs with gaps generated per the pair

FSA model. All but one of the pairs converged to a single attractor and did so in less than

10 iterations. One pair had two attractors, with nearly the same sopen but sextend values

differing by 7%. For all pairs (including the double attractor), the attractor’s sopen is larger

than the model, the error was as much as 30% but was usually within 10%. For all but

two, sextend was smaller than the model, off by as much as 10%; for most it was within

5%. Of the other two, one overestimated sextend by 1%; the other was the double attractor

case, in which both attractors overestimated sextend by 10-20%. The double attractor case

had model parameters pG+C=31%, Pmatch=.65, Popen=.024 and Pextend=.81, all of which are

extremes over the parameter space. Results are similar for the 81 power-law gap

sequence pairs. Convergence results17 for sopen are also too large but as a rule are much

closer to the model, all cases being within 7%. Of the 81 sequence pairs, two lead to

multiple attractors.

To evaluate whether the inference process improves scores—improves the

alignments produced with those scores—we evaluated the alignments using each score

set along the iteration path. Iteration was performed according to the process in figure 5.4

with only one starting point for gap scores. For comparison, the default BLASTZ score

set was also tested. Since the true alignments for these sequence pairs are known, true

17 While sextend participated in convergence, we cannot interpret the accuracy of sextend; there is no model
value to compare to.

 35

(TP) and false positives (FP) can computed, allowing us to evaluate by ROC, both

visually and numerically.

Figure 5.6 shows the performance of each score set for the same sequence pair

used in the convergence discussion. Iteration produced 15 score sets. The best set was

gaps0, which combines the converged substitution scores with default gap scores

(sopen=-3.5smax and sextend=-0.20smax). Several score sets had a higher ratio of TP to FP for

high scoring alignments, but found less total TP. For example, gaps2, gaps3, and gaps4

have fewer FP than gaps0 up about 45,000 TP but don’t find much more TP than that.

Gaps1 exhibits the same effect, but with a smaller FP advantage and a higher TP limit.

For this sequence pair, each iteration of gap scores made things worse. Iteration of

substitution scores seems to have made little difference. Other than subs0, which is a

simple

!

±1 match/mismatch set, the substitution sets are so close that many of them are

obscured in this plot. It is interesting to note that the BLASTZ default scoring set finds

more TP than any of the other sets tested, 1.3% more than gaps0 (65,908 bp vs. 65,052).

However, it also has a lower TP/FP ratio. Also worth noting is the relatively low TP for

all score sets. The best set only found 82% of the homology. This sequence pair has the

lowest identity and highest gap rates of the simulated sets.

Disappointingly, these results are not typical of all the simulated sequence pairs.

We have noticed no trend as to which of the score sets produced by iteration is the best.

5.6 Experimental Results on Actual Genomic Sequences

We applied the iterated inference procedure to 35 modified ENCODE sequence

pairs, with coding and repeat regions removed from human and repeats unmasked for the

other species (section B.3). For these sequences we do not know the correct answers and

have to use a different means to evaluate the quality of results. For this purpose, we

estimate the false positive rate by aligning one sequence to the other sequence,

backwards. The backwards sequence has no known biological meaning, as it is reversed

but not complemented. As such, it is much like a random sequence with the same base

composition as the original, but it also maintains some local base variations from the

 36

Figure 5.5 Scores inference convergence on simulated sequence pair. Open circles

indicate twelve different starting points for gap scores; lines and solid circles show the

progression of iterated scores. Each path converges to sopen=-12.5 sextend=-0.45 (O=700

E=25 if scaled so that smax=100). Target shows score expected from model, to sopen=-10.6

sextend=-0.44.

 37

Figure 5.6 Scores inference performance on simulated sequence pair. Dashed lines are

ROC plots of iterated score sets. Solid line is for best score set. Legend shows score sets

ranked by ROC20000. Names indicate position in iteration sequence (subs 0 is initial

substitution score set, subs 1 is after one iteration, etc.). Value shown is ratio of the score

set’s ROC20000 to that of the best. Score sets were scaled so that smax=100 and rounded to

nearest integers. For each curve, the highest scoring alignments occur in the lower left,

and score decreases along the curve. The actual alignment contains 80,000 homologous

base pairs.

 38

original that a simple random sequence would not18. Using this estimate of FP, we can

evaluate alignments visually by comparing total aligned bases to FP. This is similar to

ROC, with the major difference that aligned bases equals TP+FP. This evaluation

technique has shortcomings, which we will address shortly.

As in section 5.5, we evaluate the score sets along the inference iteration path.

Figure 5.7 shows the performance of each score set for region ENm001, human vs.

mouse. The gaps0 set stands out as the best, aligning significantly more bases for any

value of FP. For example, at FP=0 it identifies 12% more homology than the next best

score set (730K bp vs. 660K).

While 5.7 shows very nice results with a clear winner, using alignments to

backwards sequence as an estimate of FP leads to a logical inconsistency which we are

not able to explain. If the estimate were exactly the FP rate, then we could compute TP

by subtracting FP from the total bases aligned. This would enable us to plot a true ROC

plot; such a plot is shown in figure 5.8. Unfortunately, this leads us to the nonsensical

conclusion that the total number of TP can decrease as we discover more FP. This is

evident from the negative slope of the top of every curve19.

 The crux of the inconsistency is demonstrated in figure 5.9. No FP bases are

found above a certain score. As the score decreases, the FP rate increases, but initially is

increasing slower than the total bases aligned. Eventually the FP rate exceeds the total

rate, and the number of TP decreases. We are hard-pressed to explain this paradox;

possibly it is an artifact of random FP having quadratic growth20 (relative to sequence

length) while TP is essentially linear. We briefly investigated using alignments on

random sequences for an FP estimate but it appeared the paradox still existed. Figure 5.10

illustrates why—the scoring distributions for both FP estimates have similar shapes. The

18 For example, promoter regions usually contain an elevated rate of G+C compared to the rest of a
genome.

19 This is true even for gaps0, but it is less noticeable.
20 Since our unit of comparison is an alignment column, rather than an aligned base, the expected number

of FP contributed by a particular base in sequence 1 grows with the length of sequence 2. This is in
contrast to the expected number of TP contributed, which, in the absence of repeats in sequence 1 in this
test, is constant.

 39

only apparent difference is that alignments of the random sequences tended to score

higher.

Figure 5.7 Scores inference performance on real sequence pair. Vertical axis is all bases

aligned for ENm001 human vs. mouse with K=0. Horizontal axis is false positive rate

estimated as bases aligned to backward mouse sequence. Solid line is for best score set.

Legend shows score sets and ROC ratios as in figure 5.6.

 40

Figure 5.8 Scores inference performance adjusted for true positive rate. The same data is

shown as in figure 5.7, but the vertical axis has been replaced by an estimate of the true

positive rate (true positive = bases aligned – false positive). All curves contain a portion

with negative slope, indicating a logical inconsistency.

 41

Figure 5.9 Estimating false positive rate by alignment to backward sequence. Bases

aligned for ENm001 human vs. mouse with K=0 using the best score set found (gaps0).

(Solid black) count of all aligned bases. (Red) bases aligned to backward mouse

sequence. (Dashed) true positives, estimated by subtracting backward count from total

count. (Blue) total true positives estimated. Logical inconsistency is revealed where

estimated true positive curve is above total true positives estimate.

 42

 (a) (b)

Figure 5.10 False positive scoring distributions. Distribution of scores for two estimates

of false positive alignments using the gaps0 score set. (a) Estimated by alignment of

random sequences, with K=1500. (b) Estimated by alignment of ENm001 human vs.

backward mouse sequence with K=0. Shape of distribution to the right of the red line is

similar to shape for random sequences.

 43

Chapter 6

LASTZ Experimental Results

6.1 Hashed Diagonal Extent Table

To filter out redundant gap-free extension of seed hits we keep track of the extent

of expansion along each diagonal. To reduce memory requirements for large sequences,

we track only by a 16-bit hash value of the diagonal. Hash collisions will cause us to

reject some seed hits and cause us to miss some homology.

To evaluate the effect of hash collisions, we ran alignments on 35 pairs of

ENCODE sequences using LASTZ with default settings and a special version of LASTZ

without diagonal hashing. The number of hash failures was counted, and the difference

between the resulting alignments was measured (dividing alignment columns into true

and false positives and false negatives, as described in section B.5).

It should be noted that not all collisions are hash failures. A collision occurs

whenever the current seed hit’s diagonal differs from the most recent diagonal with the

same hash value. A failure occurs only when the extent stored for the diagonal’s hash

equivalent is beyond the seed hit. In other words, when some other diagonal with the

same hash value contains an HSP that extends beyond the current seed hit, we have a

failure. This is rare; the majority of collisions are not failures,

Table 6.1 shows the results. The failure rate is small but increases with sequence

length. Though the rate is small, due to the large number of seed hits the number of

failures is seemingly large, in some cases more than ten thousand. Regardless, there is no

disagreement in the resulting alignments. In spite of the failures, there are still enough

seed hits to identify the same alignments.

6.2 Z-step

The amount of memory used for seeding can be reduced by the use of sparse

spacing. Seed words are only stored for positions that are multiples of the z-step. In

 44

Table 6.1 Hash failures in the diagonal extent table.

region human
bp species bp seed

hits
hash

failures
failure

rate
alignment
coverage

baboon 1.95M 5.10M 10,309 0.20% 1,019,525
mouse 1.49M 3.28M 6,762 0.21% 529,724

dog 1.51M 3.15M 7,069 0.22% 721,254
opossum 1.83M 3.90M 7,042 0.18% 78,682

ENm001 1.11M

chicken 744K 1.48M 2,511 0.17% 14,303
baboon 1.16M 2.47M 3,367 0.14% 645,347
mouse 1.25M 2.03M 2,803 0.14% 405,847

dog 919K 1.63M 2,283 0.14% 564,253
opossum 1.26M 2.18M 2,608 0.12% 190,504

ENm012 647K

chicken 528K 849K 1,073 0.13% 89,438
baboon 1.36M 2.26M 2,385 0.11% 620,571
mouse 1.16M 1.61M 1,698 0.11% 394,012

dog 990K 1.56M 1,859 0.12% 551,268
opossum 1.43M 2,14M 2,053 0.10% 78,422

ENm014 646K

chicken 513K 670K 864 0.13% 9,510
baboon 584K 637K 281 0.04% 258,549
mouse 595K 374K 190 0.05% 73,265

dog 427K 339K 233 0.07% 203,912
opossum 506K 378K 157 0.04% 11,800

ENr114 266K

chicken 182K 95K 37 0.04% 1,529
baboon 498K 373K 66 0.02% 269,169
mouse 424K 174 31 0.02% 38,203

dog 318K 154K 32 0.02% 90,074
opossum 991K 373K 65 0.02% 7,610

ENr132 318K

chicken 328K 120K 21 0.02% 2,237
baboon 819K 609K 156 0.03% 285,148
mouse 568K 277K 74 0.03% 140,615

dog 498K 329K 148 0.05% 238,898
opossum 591K 327K 97 0.03% 33,227

ENr221 289K

chicken 251K 119K 58 0.05% 8,672
baboon 1.02M 650K 120 0.02% 227,477
mouse 516K 232 73 0.03% 86,066

dog 437K 259K 83 0.03% 184,341
opossum 611K 312K 80 0.03% 48,763

ENr323 236K

chicken 136K 56K 9 0.02% 10,607

addition to memory savings, z-step can speed up the seeding stage by reducing the

number of seed hits and the number of gap-free extensions performed21. Subsequent

stages are also sped up due to a reduction in the number of anchors. Z-step can

21 The reduction in HSPs is not linear, though. Since most HSPs contain more than one seed hit, an HSP
will only be completely missed if all of its seed hits are at non-multiples of z.

 45

potentially cause loss of sensitivity in the resulting alignments, in return for a gain in

speed.

To compare the speed gain to sensitivity loss, we ran alignments on 35 pairs of

ENCODE sequences using z-step values of 2, 5, 10, 20, 50 and 100, with default settings

otherwise. For timing comparisons we aligned without a z-step. For alignment

differences we compared to a BLASTZ alignment. Figure 6.1 shows results for two of

seven regions. In 6.1(a) it is apparent for ENm014 that the time saved by using a z-step

always exceeds the loss in sensitivity, even for large z-steps. The miss rate is remarkably

low for baboon; for Z=100 the miss rate was slightly less than 1%, suggesting that long z-

steps are a viable strategy for closely related sequences. Five of the seven regions had

loss of around 1% at Z=100, while the other two had loss of 1.6% and 2.5%.

The results for ENm014 are typical of the other regions, but there are exceptions.

6.1(b) shows some odd results for ENr114. For chicken Z=20 performs worse than Z=50,

and the miss rate actually exceeds time savings at Z=100. Inspection of table 6.1 reveals

that chicken ENr114 has a low number of seed hits compared to other species and

regions. The only alignment with fewer seeds hits, chicken ENr323 (not shown), exhibits

a similar anomaly, with runtime for Z=20 exceeding that for Z=10, even though there is

negligible loss in sensitivity for either.

It should be noted that the sensitivity losses for large Z, while lower than the time

savings, are still unreasonably large for most applications. They are of interest here as a

means of reducing the alignment time during inference.

6.3 Twin Hit Seeds

LASTZ supports twin hit seeds, in which two nearby hits on the same diagonal

are required before gap-free extension is performed. Figure 6.2 shows an example of how

they can increase specificity. Comparing 500K bp regions of human and mouse with

K=1500. Without requiring twin hits, as in 6.2(a) and (b), we get a lot of alignment

‘noise’. In 6.2(c) and (d) twin hits were required, overlapping by as much as 10 bp or

separated by up to 10 bp. The twin hit seed removes nearly all the noise in the HSP stage.

Gapped alignment speed is greatly affected by the number of HSPs. The noisy alignment

in 6.2(b) took 40.4 seconds, the cleaner alignment in hits 6.2(d) took only 7.6 seconds.

 46

(a)

(b)

Figure 6.1 Z-step experimental results. (a) ENCODE region ENm014 exhibits regular

behavior. (b) ENCODE region ENr114 shows strange behavior.

 47

 (a) (b)

 (c) (d)

Figure 6.2 Twin hit seed. Dot plots for alignments of ENCODE region ENr233 human

(horizontal axis, 500K bp) to mouse (vertical axis, 466K bp). (a) HSPs for single hit seed.

(b) Gapped alignments from single seed hits. (c) HSPs for twin hit seed. (d) Gapped

alignments from twin seed hits. The same spaced seed was used for all cases. All four

plots have undergone identical contrast adjustment to emphasize the presence of extra

alignments in (a) and (b).

 48

Table 6.2 Statistics for single hits vs. twin hits.
 single hits twin hits
gap-free extensions 220,402 1,025
bp extended (gap-free) 13,087,680 147,060
bp per gap-free extension 59 143
HSPs 3,069 885
anchors extended 1,814 175
gapped extensions 3,628 350
DP cells visited 1,670,368,460 295,283,732
fraction of DP matrix visited 1/140th 1/789th
DP cells per gapped extension 460,410 843,668
run time (seconds) 40.4 7.6

 49

Chapter 7

Conclusions and Future Work

We have set in place a platform for automated alignment parameterization,

LASTZ, and used that platform to create and evaluate a program, INFERZ, to infer

scoring sets based on a well-understood mathematical model. We have found that multi-

step inference of scores converges to an approximation of the correct scores but tends to

overestimate the gap open penalty and underestimate the gap extend penalty. Further, we

have found that this method is unpredictable as a means of finding an optimal score set.

The convergence point is no more likely to be the best score set than any other set along

the convergence path.

We view this work as a starting point toward the goal of completely automating

alignment parameterization. In addition to inferring score sets, we will also need to

automatically choose seeding strategies and thresholds. Ideally the user should only have

to choose one parameter, ranging from zero (fast run time, lower sensitivity) to one (high

sensitivity, slower run time).

The improvements in LASTZ, in comparison to BLASTZ, represent the next step

in the evolution of BLASTZ. The primary guiding factor was to give INFERZ more

optimization choices, most of which have yet to be explored.

We found that what appeared to be a reasonable scheme for automatically

evaluating score sets—using alignment to backwards sequences—suffers from a logical

inconsistency. Though this is a disappointing result, it does not render the scheme

entirely useless. There remains a score region outside of the inconsistency, specifically

for alignments scoring high enough that the false positive estimate is low, and we can

make use of this to compare alignment results and score sets.

Being able to quickly evaluate score sets is important in light of the inconsistency

of iterated inference. The promise of iterated inference was that it would converge to an

optimal or near optimal score set, eliminating the need for evaluation feedback. As this is

not true, other optimization techniques should be explored. Convergence plots suggest

 50

the score space terrain is smooth enough that hill climbing techniques would work. This

requires quick evaluation of many scores sets. This might be accomplished by aligning a

coarse subsample of the sequences with a very large z-step, but the effect of doing so has

not been explored.

The additional versatility of LASTZ allowed us to test several new seeding

strategies, but there are still more strategies that could be tried, for example the multiple

seeds of Buhler et al. (2003) and Li and Ma (2003). Half-weight seeds have only been

evaluated empirically, by Hou et al. (2007), and deserve a mathematical analysis, such as

was done for (full weight) spaced seeds in Buhler et al. (2003), to determine their

expected effect on sensitivity. The current implementation of LASTZ is slower than

BLASTZ during seed hit processing. There is no intrinsic reason why this should be the

case. This aspect of the program has received little attention to date, and the author

believes this can be brought into line with the speed of BLASTZ when they are

performing identical alignments. In addition, speed gains may be accomplished by using

more than two stages of interpolation.

Because affine gap scoring is in conflict with empirical evidence of gap length

distributions, LASTZ could be improved by incorporating a slower but more biologically

realistic gap scoring model as a post processing step. Cartwright (2006) has shown the

viability of post processing to improve alignment quality, but incorporating feedback

from the post processed alignments could improve the scores used during the main

alignment phase. Even if we achieve the optimal score set for affine gap alignment by

itself, we may need a suboptimal score set to achieve the best alignments after post

processing.

The quantum alignment capability incorporated in LASTZ also deserves further

exploration. With appropriate scoring matrices and short queries (<20 bp), gap-free

quantum-to-DNA alignment is equivalent to a position-weight-matrix motif finder. The

ability to allow gaps and efficiently handle longer queries could be useful for long-motif

applications, such as repeat finding. Adding support for quantum-to-quantum alignment

would allow it to be used as the basis for a progressive multiple aligner, maintaining

probabilistic base information for every internal ancestor.

 51

BIBLIOGRAPHY

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and

Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Research 25:3389–3402.

Batzoglou S. 2005. The many faces of sequence alignment. Briefings in Bioinformatics

6:6-22.

Bray N. and Pachter L. 2004. MAVID: Constrained ancestral alignment of multiple

Sequences. Genome Research 14:693-699.

Buhler J., Keich U. and Sun Y. 2003. Designing seeds for similarity search in genomic

DNA. Proc. 7th Annual International Conference on Research in Computational

Molecular Biology (RECOMB’03), 67–75.

Burrows, M. and Wheeler, D.J. 1994. A block-sorting lossless data compression

algorithm. Technical report, Digital SRC, 1994. Research Report 124.

Cameron, M., Williams, H.E. and Cannane, A. 2006. A deterministic finite automaton for

faster protein hit detection in BLAST. Journal of Computational Biology 13:965-978.

Cartwright, R.A. 2006. Logarithmic gap costs decrease alignment accuracy. BMC

Bioinformatics 7:527.

Chiaromonte, F., Yap, V.-B. and Miller, W. 2002. Scoring pairwise genomic sequence

alignments. Pacific Symp. Biocomputing 115–126.

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. 1998 Biological Sequence Analysis,

Cambridge University Press, New York.

ENCODE Project Consortium 2004. The ENCODE (ENCyclopedia Of DNA Elements)

Project. Science 306:636–640.

Farris J. 1977. Phylogenetic analysis under Dollo’s law. Systematic Zoology 26:77-88.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences. Journal of Molecular

Evolution 17:368–376.

 52

Flannick J. and Batzoglou S. 2005. Using multiple alignments to improve seeded local

alignment algorithms. Nucleic Acids Research 33:4563-4577.

Gotoh O. 1982. An improved algorithm for matching biological sequences. Journal of

Molecular Biology 162:705-708.

Gribskov, M. and Robinson, N. 1996. Use of receiver operating characteristic (ROC)

analysis to evaluate sequence matching. Computers and Chemistry 20:25-33.

Gusfield, D. 1997. Algorithms on Strings, Trees and Sequences, Cambridge University

Press, New York.

Haussler, D. 2005. Personal communication.

Holmes, I. and Durbin, R. 1998. Dynamic programming alignment accuracy. Journal of

Computational Biology 5:493-504.

Hou, M., Harris, R.S. and Miller, W. 2007. A new seeding strategy for DNA alignment.

RECOMB 2007 poster proceedings.

Hudek A. and Brown D. 2005. Ancestral sequence alignment under optimal conditions.

BMC Bioinformatics. 6:273.

Joachims, T. 2003. Learning to align sequences: a maximum-margin approach (Technical

Report). Cornell University.

Kececioglu, J. and Kim, E. 2006. Simple and fast inverse alignment. In Proceedings of

the 10th ACM Conference on Research in Computational Molecular Biology

(RECOMB), 441–455.

Levenstein V. 1966. Binary codes capable of correcting insertions and reversals. Sov.

Phys. Dokl. 10:707-710.

Li, M. and Ma, B. 2003. PatternHunter II: highly sensitive and fast homology. Genome

Informatics 14:164–175.

Lippert, R. 2005. Space-efficient whole genome comparisons with Burrows–Wheeler

transforms. Journal of Computational Biology 12:407-415.

 53

Lunter, G., Rocco, A., Mimouni, N., Caldiera, A and Hein, J. 2007. Uncertainty in

homology inferences: assessing and improving genomic sequence alignment.

(submitted).

Ma B., Tromp J. and Li M 2002. PatternHunter—faster and more sensitive homology

search. Bioinformatics 18:440-445.

Miller, W. et al. 2007. 28-Way vertebrate alignment and conservation track in the UCSC

Genome Browser. Genome Research in press.

Needleman S. and Wunsch C. 1970. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biology

48:443-453.

Pruitt, K. D. and Maglott, D. R. 2001. RefSeq and LocusLink: NCBI gene-centered

resources. Nucleic Acids Research 29:137–140.

Schwartz, S., Zhang, Z., Frazer, K., Smit, A., Riemer, C., Bouck, J., Gibbs, R., Hardison,

R., and Miller, W. 2000. PipMaker: A web server for aligning two genomic DNA

sequences. Genome Research 10:577–586.

Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haussler, D.,

and Miller, W. 2003. Human–mouse alignments with BLASTZ. Genome Research

13:103–107.

Siepel, A. and Haussler, D. 2003. Phylogenetic estimation of context-dependent

substitution rates by maximum likelihood. Molecular Biology and Evolution 21:468-

88.

Siepel, A. 2005. Personal communication.

Smith T. and Waterman M. 1981. Identification of common molecular subsequences.

Journal of Molecular Biology 147:195-197.

Sun Y. and Buhler J., 2005. Designing Multiple Simultaneous Seeds for DNA. Journal of

Computational Biology 12: 847–861.

 54

Sun Y. and Buhler J., 2006. Choosing the best heuristic for seeded alignment of DNA

sequences. BMC Bioinformatics 7:133.

Tamura, K. 1992. Estimation of the number of nucleotide substitutions when there are

strong transition-transversion and G+C content biases. Molecular Biology and

Evolution 9:678-687.

Yang Z. 1994 Estimating the pattern of nucleotide substitution. Journal of Molecular

Evolution 39:105-11.

Zhang, Z., Berman, P. and Miller, W. 1998. Alignments without low-scoring regions.

Journal of Computational Biology 5:197–210.

Zhang, Z. and Gerstein, M. 2003. Patterns of nucleotide substitutions, insertions and

deletions in the human genome as inferred from human pseudogenes. Nucleic Acids

Research 31:5338–5348.

Zhou, L., and Florea, L. 2007. Designing sensitive and specific spaced seeds for cross-

species mRNA-to-genome alignment. Journal of Computational Biology 14:113-130.

 55

Appendix A

Glossary

HSP High-scoring Segment Pair. An alignment between two sequences,

containing no gaps.

pmatch Probability that an alignment column contains identical nucleotides.

pxition Probability that an alignment column contains a transition; either both are

purines (A or G) or both are pyrimidines (T or C)

pxversion Probability that an alignment column contains a transversion (one purine and

one pyrimidine)

pxy Probability of an alignment column with x for sequence 1 and y for sequence

2.

px• Probability of an alignment column with x for sequence 1.

p•y Probability of an alignment column with y for sequence 2.

pG+C Probability of a G or C.

qA,qC,qG,qT For quantum base q, the probability that q=A (or C, G or T).

sxy Log-odds score for an alignment column with x for sequence 1 and y for

sequence 2.

sopen Log-odds score for opening a gap.

sextend Log-odds score for extending a gap.

smax Maximum log-odds score for a score set.

!

˜ x Nucleotide complement.

!

˜ A = T,

!

˜ C = G,

!

˜ G = C and

!

˜ T = A.

|X| Length of (number of bases in) sequence X.

X[i..j] Subsequence of X consisting of bases i through j, inclusive.

x-drop Limit on negative scoring segments allowed in an gap-free extension.

y-drop Limit on negative scoring sub-alignments allowed in an gapped extension.

z-step Seed word position granularity. With a z-step of 5 only every 5th position in

sequence 1 is used.

 56

Appendix B

Methods

B.1 Analysis of 28-Vertebrate Alignments

In order to have typical genome-wide parameters for simulation data, we

measured statistics over pairwise alignments of human to six vertebrates—macaque,

mouse, dog, opossum, platypus and chicken (assemblies hg18, rheMac2, mm8, canFam2,

monDom4, ornAna1 and galGal3). We projected pairwise alignments from whole

genome alignments of 28 species (Miller et al., 2007) downloaded from the UCSC

Genome Browser (http://genome.ucsc.edu). Alignment blocks were partitioned into three

sets by human G+C content, divided into low (less than 37.5%), medium (37.5% to

45.5%) and high (more than 45.5%).

Table B.1 shows estimated genome-wide probabilities of nucleotide match,

transition, transversion, gap open and gap extend. These provide guidance for parameter

choices of the simulated data sets of section B.2.

 Table B.2 shows alignment scores inferred from observed probability estimates

as per (5.5). These provide a base point for comparing gap scores to those used in

BLASTZ. Typically BLASTZ scores are scaled so that the maximum substitution score

(smax here) is 100. Thus the ratios sopen/smax and sextend/smax correspond to BLASTZ’s O

and E parameters, divided by -100. BLASTZ’s defaults are O=400 and E=30. The table

shows open scores that would range from 347 to 569 and extend scores from 15 to 23.

This suggests that BLASTZ slightly under penalizes gap open and over penalizes gap

extend.

B.2 Simulated Sequence Pairs

We generated 135 simulated neutrally evolved sequence pairs covering the ranges

of statistics observed in the 28-vertebrate alignments (section B.1). Substitution rates

were modeled with the T92 evolution model (Tamura, 1992). T92 is a three-parameter

 57

Table B.1 Genome-wide alignment probabilities observed in six vertebrates.

human
GC species GC

!

p
match

!

p
xition

!

p
xversion

!

p
xition

p
xversion

!

popen

!

p
extend

!

pmismatch

popen

low macaque 31% 0.942 0.037 0.021 1.81 0.008 0.775 7.2
low mouse 31% 0.673 0.185 0.142 1.30 0.023 0.791 14.0
low dog 31% 0.758 0.146 0.096 1.52 0.019 0.766 12.8
low opossum 31% 0.635 0.187 0.178 1.05 0.023 0.787 16.2
low platypus 31% 0.640 0.188 0.172 1.09 0.021 0.778 16.8
low chicken 31% 0.641 0.182 0.177 1.03 0.023 0.786 15.5

medium macaque 41% 0.938 0.041 0.020 2.05 0.006 0.789 10.0
medium mouse 41% 0.665 0.195 0.139 1.40 0.022 0.797 15.5
medium dog 41% 0.744 0.159 0.097 1.63 0.017 0.768 15.0
medium opossum 41% 0.654 0.189 0.157 1.20 0.019 0.787 18.4
medium platypus 41% 0.658 0.186 0.155 1.20 0.017 0.781 19.7
medium chicken 41% 0.681 0.172 0.147 1.17 0.016 0.780 19.7

high macaque 53% 0.928 0.050 0.022 2.32 0.007 0.812 10.3
high mouse 54% 0.664 0.196 0.141 1.39 0.023 0.812 14.4
high dog 53% 0.717 0.170 0.113 1.51 0.020 0.793 14.0
high opossum 56% 0.643 0.193 0.164 1.17 0.020 0.813 17.7
high platypus 58% 0.624 0.192 0.184 1.04 0.021 0.813 18.2
high chicken 57% 0.659 0.173 0.169 1.03 0.018 0.809 19.5

Table B.2 Alignment scores derived from observations in six vertebrates.

human
GC

species

!

s
AA

!

s
CC

!

s
max

!

sopen

!

s
extend

!

sopen

smax

!

s
extend

s
max

 average
non-gap

average
gap

low macaque 1.46 2.51 2.51 -8.72 -0.37 -3.47 -0.15 62.2 bp 4.4 bp
low mouse 1.06 1.67 1.67 -7.27 -0.34 -4.35 -0.20 21.4 4.8
low dog 1.19 1.97 1.97 -7.38 -0.38 -3.75 -0.20 26.4 4.3
low opossum 0.96 1.60 1.60 -7.29 -0.35 -4.55 -0.22 22.2 4.7
low platypus 1.01 1.58 1.58 -7.29 -0.36 -4.61 -0.23 23.3 4.5
low chicken 0.99 1.61 1.61 -7.25 -0.35 -4.51 -0.22 21.7 4.7

medium macaque 1.67 2.15 2.15 -9.23 -0.34 -4.30 -0.16 81.5 4.7
medium mouse 1.21 1.49 1.49 -7.45 -0.33 -4.99 -0.22 23.2 4.9
medium dog 1.36 1.70 1.70 -7.55 -0.38 -4.45 -0.22 29.4 4.3
medium opossum 1.15 1.52 1.52 -7.57 -0.35 -4.96 -0.23 26.7 4.7
medium platypus 1.21 1.49 1.49 -7.64 -0.36 -5.13 -0.24 28.8 4.6
medium chicken 1.23 1.58 1.58 -7.72 -0.36 -4.90 -0.23 30.9 4.5

high macaque 1.95 1.80 1.95 -9.26 -0.30 -4.75 -0.15 71.8 5.3
high mouse 1.38 1.29 1.38 -7.45 -0.30 -5.39 -0.22 21.3 5.3
high dog 1.54 1.38 1.54 -7.51 -0.33 -4.88 -0.22 24.7 4.8
high opossum 1.35 1.26 1.35 -7.69 -0.30 -5.69 -0.22 24.7 5.3
high platypus 1.41 1.11 1.41 -7.66 -0.30 -5.43 -0.21 24.3 5.4
high chicken 1.47 1.23 1.47 -7.86 -0.31 -5.36 -0.21 28.5 5.2

 58

model, fixing the G+C content distribution (

!

"G = "C = p ,

!

" A = "T =1# p) and the

instantaneous ratio of transitions to transversions (

!

"=transition rate / transversion rate).

(B.1) shows the instantaneous rate matrix given p and

!

" . The third parameter is time t

(equivalently, branch length), with the transition matrix

!

T = exp(Qt). While this is the

underlying model, we chose a different parameterization based on p, pmatch and observed

ptransition / ptransversion ratio.

(B.1)

We allowed nine different sets of substitution parameters. G+C content was 31,

41 or 55% and pmatch was 65, 80, and 95%. ptransition / ptransversion ratio was fixed at 1.5. For

each of the nine sets we chose an appropriate rate and rate matrix of form (B.1) to

produce a substitution matrix with the desired expected observed statistics.

We generated two collections of sequence pairs for each substitution set. One set

uses the pair FSA model of section 5.1. The other generates gaps with a power law

distribution. For the FSA model we allowed popen to be 0.008, 0.016 and 0.024, and

allowed pextend to be 0.77 or 0.81. For power law gaps, we used the same values for popen

and allowed the power law exponent to be 1.5, 1.6 or 1.7. These latter values match the

range observed in the 28-vertebrate alignment, but which are not shown in section B.1.

Thus we have 54 sets for the pair FSA model, and 81 for the power law gaps model.

For each set, we generated 100 pairs, each with 800 homologous bp sandwiched

between two independent 100 bp segments. The pairs were then concatenated into two

sequences with 200 Ns acting as separators.

B.3 ENCODE Data

We constructed 35 test data sets from real genomic data, extracting data from

seven encode regions (ENm001, ENm012, ENm014, ENr114, ENr132, ENr221 and

ENr323) for five species (baboon, mouse, dog, opossum and chicken). The specific

regions were chosen for the property that they are free of rearrangements when aligned

with human for all five species. Following the methods of Chiaromonte et al. (2002),

 59

coding and repeat regions, as identified by RefSeq (Pruitt and Maglott 2001) annotations,

were stripped from the human sequences. Repeat regions in the other five species were

unmasked (made indistinguishable from other bases). Species aligning to human negative

strand were reverse-complemented.

B.4 Syntenic Chromosomal Data

To facilitate testing on chromosome-to-chromosome alignments, we constructed a

data set consisting of one 247Mbase sequence (human chromosome 1) and one

200Mbase sequence. The latter was constructed from six segments of mouse

chromosomes 1, 3, and 4 that aligned well to human chromosome 1. The result simulates

a pair of chromosome-length sequences with a common ancestral sequence, without

rearrangements, at human-mouse evolutionary distance. Repeat masking information was

retained.

B.5 Receiver Operating Characteristic

To measure the accuracy of a discovered alignment when the correct answer

(reference alignment) is known, we use the Receiver Operating Characteristic (ROC). We

follow Gribskov and Robinson (1996), in brief, plotting true positives against false

positives and measuring the area under the curve. ROC gives a score between 0 and 1,

with higher values indicating higher accuracy.

To compute the ROC score, we perform alignment with the alignment score

threshold set low enough to assure we will discover enough false alignments—aligned

segments that are not in the reference. We then compare discovered alignments to the

reference and treat the aligner as a classifier with an adjustable score threshold. All

ungapped columns in an alignment are assigned the score of that alignment. Columns that

are also in the reference are true positives; columns that aren’t are false positives. With a

high enough score the classifier will identify nothing. As the score decreases, alignments

will be ‘discovered’ and the true and false positive totals will increase.

Plotting true and false positives produces the ROC curve, giving a visual

indication of how well the hypothetical classifier is performing. See figure B.1. A perfect

classifier would discover all true positives before any false positives; the curve would

 60

hug the left and top edges of the unit square. A perfectly bad classifier would hug the

bottom and right edges, discovering all false positives before any true positives. Thus the

area under the ROC curve gives a measure of the quality of the classifier.

As pointed out in Gribskov and Robinson (1996), it is more meaningful to ignore

any true positives that score lower than a certain number n of false positives. They define

ROCn to be the area under the curve when only the n highest scoring false positives are

considered. Figure B.1(b) demonstrates this measure.

 61

score FP TP total FP total TP
103 36 267 36 267
81 63 294 99 561
77 152 311 251 872
73 84 303 335 1175
66 33 195 368 1370
52 162 272 530 1642
51 53 244 583 1886
39 6 186 589 2072
38 8 118 597 2190
37 4 93 601 2283
36 2 60 603 2343
35 0 53 603 2396
34 10 60 613 2456
33 19 92 632 2548
31 1 46 633 2594
30 11 85 644 2679
29 15 68 659 2747
26 0 48 659 2795
24 0 50 659 2845
23 16 147 675 2992
22 8 196 683 3188
21 0 29 683 3217
20 5 39 688 3256
19 22 153 710 3409
18 5 99 715 3508
16 0 20 715 3528
15 7 173 722 3701
14 0 28 722 3729
13 19 62 741 3791
12 79 35 820 3826
11 126 75 946 3901
10 224 48 1170 3949
9 470 114 1640 4063
8 539 29 2179 4092
7 840 59 3019 4151
6 837 23 3856 4174
5 603 9 4459 4183
4 416 0 4875 4183
3 87 0 4962 4183
2 26 0 4988 4183

 (a) (b)

Figure B.1 ROC example. (a) Alignment results relative to a known reference alignment,

shown as true (TP) and false positives (FP) by decreasing score. Row in bold shows

cutoff for computation of ROC1000. (b) Black line is ROC curve, plotting total TP vs. total

FP. Red box shows calculation of ROC1000 (≈ 0.52), the ratio of the solid red area to the

area of the red box.

 62

Appendix C

Quantum DNA Techniques

One application of quantum alignment is to align a present day DNA sequence to

a reconstructed ancestral sequence. The process breaks down into four parts— inferring a

quantum sequence for the ancestor, reducing the sequence to an alphabet of 255

representative q-bases, creating a scoring scheme reflecting the similarity of any of these

q-bases with DNA, and aligning the quantum sequence with a DNA sequence. Choosing

an alphabet is of practical importance, reducing the space needed to represent the

sequence to a byte per base, and allowing alignment scoring to be implemented with a

small lookup table.

In sections C.1, C.2 and C.3 we synopsize solutions for ancestral inference,

alphabet selection and scoring, due to Siepel (2005). Quantum alignment has already

been discussed in section 4.4; here (section C.4) we describe the DNA ball generation

algorithm required for seeding quantum vs. DNA alignment.

C.1 Inferring Ancestral Quantum Sequence

We are given a multiple alignment of DNA sequences for several species along

with a phylogenetic tree topology and are to infer a quantum sequence for the ancestor.

The first step is to decide which bases were present in the ancestral sequence and

which were not. The latter represent indels in the hypothetical alignment of the ancestor

to the multiple alignment. We do this using Dollo parsimony (Farris, 1977), which, as

applied here, says that the most parsimonious explanation for a particular column has no

more than one insertion event. The single insertion rule implies that the insertion

occurred at the branch leading into the last common ancestor of all non-gap leaves. In the

special case that this is a child of the root, we cannot distinguish whether we had an

insertion before the root, followed by a deletion between the root and one child, or an

insertion between the root and the other child. We take the ‘safe’ approach and infer a

base.

 63

The second step is to estimate the nucleotide substitution model that best fits the

data. It is assumed that all the locations have undergone the same evolutionary process,

and that substitutions can be modeled by a time-reversible Markov process. The REV

model (Yang, 1994) is used. The result is a substitution rate matrix Q, its stationary

distribution π, and a length for each edge of the tree, measured in substitutions per site.

(C.1)

The third step is to infer the ancestral sequence; to estimate the probability of each

nucleotide at each non-gap position. For any column of the alignment, the rate matrix and

branch lengths allow us to infer the nucleotides at ancestral nodes in the tree. This is

performed with an algorithm due to Felsenstein (1981), modified by Siepel and Haussler

(2003) to allow for gaps. For each node in the tree, it computes the probability of

observing the leaves if that node contained a given nucleotide. More formally, let u be a

node in the tree, bu be the length of the branch from u’s parent to u, and Lu be the

observations in the leaf nodes descended from u. Observations include the nucleotides A,

C, G, and T as well as gaps. We can compute

!

Pr(L
u
| u = x) recursively by formula (C.2):

(C.2)

To get the desired quantum base for this column, we adjust for the background

distribution and normalize:

(C.3)

When computed for each column of the alignment corresponding to an inferred

non-gap, the result is a sequence of quantum DNA. Figure C.1 shows an example of the

computation for a single column.

 64

C.2 Choosing a Quantum Alphabet

The set of possible quantum bases is the probability simplex over four variables,

where we have qA+qC+qG+qT = 1. It is advantageous to represent q-bases by a relatively

small alphabet, and to do so we choose 255 points from the simplex and assign each q-

base to a symbol representing the nearest such point. While the number of different q-

bases that appear in any sequence must be finite, in practice there is a different q-base for

every distinct column in the multiple alignment, the number of which grows with the

number and distances between species. These are not evenly distributed about the

simplex—most bases falling near a simplex corner (indicating near certainty for a

specific nucleotide) or edge (indicating a choice primarily between two nucleotides).

Pr(Lu|A) Pr(Lu|C) Pr(Lu|G) Pr(Lu|T) obs’d species .
0 1 0 0 C human
0 1 0 0 C chimp
0 1 0 0 C mouse
0 1 0 0 C rat
1 0 0 0 A rabbit
0 0 0 1 T cow
0 0 0 1 T cat
1 1 1 1 - dog
0 0 0 1 T hedgehog
0.000001 0.985579 0.000001 0.000009 human-chimp ancestor
0.000148 0.826509 0.000160 0.001461 mouse-rat ancestor
0.023284 0.024585 0.003395 0.002099 mouse-rabbit ancestor
0.011891 0.057052 0.017836 0.940401 cat-dog ancestor
0.000442 0.009154 0.000947 0.806805 cow-cat ancestor
0.000357 0.020443 0.000071 0.000138 human-mouse ancestor
0.000065 0.002450 0.000153 0.657229 cow-hedgehog ancestor
0.000001 0.000345 0.000001 0.000281 human-cow ancestor

(a)

Pr(A) Pr(C) Pr(G) Pr(T) species .
0.002652 0.438488 0.001063 0.557797 human-cow ancestor

(b)

Figure C.1. Quantum inference example. (a) Probability of observed subtree given

specific nucleotide at each node. (b) Probability of each nucleotide at root, adjusted for

background distribution.

 65

The method used is a clustering scheme that attempts to minimize the overall

error in encoding the quantum sequence with the chosen alphabet22. The simplex is first

carved into 175 cells, and an initial alphabet is made consisting of the centroids of each

of these cells. Each observed q-base would be assigned to the single point in its box. The

total error in each box is measured and whichever box has the largest error is granted a

second point. K-means is used to determine a good placement of the two points in that

box so as to minimize error. The process is repeated—the box with the largest error is

granted an extra code—until all 255 codes have been assigned.

The above method has some potential drawbacks. Every box is assigned a code

even if there are no q-bases observed in that box. These codes could be assigned to other

boxes to reduce error. Further, the method does not guarantee that a q-base will be

assigned to the nearest code.

The importance of the alphabet selection to the results is an open. While it is

likely that some alphabets would perform poorly, it is not yet clear to what extent it is

necessary to tune the alphabet to the specific alignment problem, and whether the gains in

alignment from optimizing the alphabet are worth the computation spent on the task.

C.3 Quantum versus DNA Scoring

The following derivation is due to Haussler (2005). Suppose we observe the

situation shown in figure C.2. d is a base in a DNA sequence, q a base in a quantum

sequence, and t the evolutionary distance between them. Assume we know t, and that we

know q (i.e. we know qx =

!

Pr(q = x),x " {A,C,G,T}). We also assume we have some

model that estimates

!

Pr(d |q = x,t) and the stationary distribution

!

Pr(d = x).

We have two hypotheses, H1, that d and q are related, and H0, that they are not.

We can compute the probability of this observation for both hypotheses:

 (C.4)

and from this we can compute a log odds score:

22 The error measure used is symmetric relative entropy (symmetric Kullback-Leibler distance), but other
measures might perform as well.

 66

(C.5)

When q is in a quantum sequence inferred from a multiple alignment of its descendants,

the model is a substitution matrix estimated from the alignment (the shaded triangle in

figure C.2), and the stationary distribution is from the same model. We’re making the

implicit assumption that substitution rates in the shaded triangle are the same as those in

the larger evolutionary context that contains d and q.

C.4 DNA Ball Generation

The ball generation algorithm, Generate-DNA-Ball, emits all DNA words that

score at least Tscore when aligned, without gaps, to quantum word q of length w. It is a

simple depth-first search with pruning of low-scoring prefixes. In lieu of recursion, the

generated word is used as a stack. Performance characteristics of this algorithm have not

been measured. In practice the performance has not been noticeably detrimental for word

sizes up to 13. Run time could potentially be improved by changing the order in which

the word is scanned, visiting locations with a wider score discrepancy first.

Figure C.2. Quantum scoring context. t is the evolutionary distance between DNA base d

and quantum base q. q is inferred from descendent tree in yellow.

 67

Generate-DNA-Ball(q,w,Tscore)

9 lowerw = Tscore

10 for i = w-1 downto 1

11 loweri = loweri+1 -

!

max
x"{A ,C ,G,T}

s(x,qi+1)

12 i = 1

13 dword1 = “$”

14 score = 0

15 while i > 0 while we haven’t considered all words…

16 if dwordi ≠ “$” subtract score for previous symbol

17 score = score – s(dwordi ,qi)

18 dwordi = Next(dwordi) try next symbol

19 if dwordi = “$” all symbols tried; backtrack

20 i = i-1

21 continue

22 score = score + s(dwordi ,qi) add score for this symbol

23 if score < loweri score too low—prune (go undo this symbol)

24 continue

25 if i < wordLen word incomplete, move to next position

26 i = i+1

27 dwordi = “$”

28 continue

29 emit dword

 68

Appendix D

Linear Inference Techniques

While it is not often mentioned in discussion of (1.1)-based alignment, computing

the score for a given alignment is a linear operation. The score is the product of a feature

vector, giving the count of each feature (the sixteen nucleotide pairs, gap open and gap

extend), and the score vector (sAA through sTT, sopen and sextend). (see figure 1.1(c) for an

example). From this viewpoint it is natural to think of linear supervised learning

techniques to find a good score vector from sample alignments.

While the author had little success using these techniques for local alignments in

large sequences, others have had success using them for global alignments on relatively

short sequences, such as proteins. We include a cursory description of these techniques

here.

D.1 Linear Discriminator

If we have samples of both positive (+) and negative (–) alignments we would

like to find a score vector S that will discriminate between the two sets. That is, for all

!

A "
+ and

!

B "
–,

!

A " S > B " S . Linear discrimination (LD) is a well-studied problem,

and we will not go into details here; we only mention that among the difficulties in

applying LD to alignment scoring are the size of the problem and the fact that complete

discrimination is unlikely in practice. Joachims (2003) presents an algorithm to address

these issues, with some constraints.

The author’s own efforts were unsuccessful. Positive samples were generated by

aligning two sequences from the HOXD region of human and mouse (about 1 Mbase),

using a starting scoring model. Negative samples were generated by aligning human to

the reverse (not reverse-complement) of mouse. Using libsvm (http://www.csie.ntu.edu.

tw/~cjlin/libsvm), an off-the-shelf LD learning program (support vector machine with a

linear kernel), two major problems were encountered. First, gap scores were not properly

constrained; often the ‘best’ solution (from the standpoint of SVM) rewarded gaps rather

 69

than penalize them. Second, the size of the problem (≈60K positives, 35K negatives) was

vastly larger than the program could keep track of in memory.

D.2 Inverse Alignment

Another approach is to treat the problem as a linear constraint problem, an idea

due to Kececioglu and Kim (2006). Though the solution could be extended to include

negatives, here we will describe it when only positive samples are available. The goal is

to find a score vector that (1) makes each sample’s alignment optimal (or as close as

possible), (2) properly constrains gap scores, and (3) maximizes the margin.

The basic idea is that a particular alignment’s optimality region, the region of

scoring space in which it is optimal, is convex with linear boundaries. We do not,

however, have to identify all the boundaries. We only have to find a point in the

optimality region. To find a score vector that makes all alignments optimal, we must find

a point in the intersection of all optimality regions. In practice the intersection will be

empty. So an additional sub-optimality control ≥0 is added that requires each alignment

only score within some fraction of optimal. More formally, for any alignment A in +

and any other alignment B of the same two sequences, we require that

 (D.1)

Kececioglu and Kim (2006) give an ingenious algorithm that solves the problem

quickly, finding the smallest possible value (to any desired accuracy) as well as a point

that meets all three requirements. The algorithm makes use of linear programming, using

an off-the-shelf linear programming package such as the GNU Linear Programming Kit

(GLPK, http://www.gnu.org /software/glpk). A key realization is that we can determine

whether we satisfy (D.1) for all B by determining whether (D.1) holds for an optimal

alignment B*.

Here we describe the algorithm as it applies to finding the two gap scores, open

and extend, with substitution scores fixed. We assume that is fixed (initially at 0). We

begin with a set of (at most) | +|+2 linear constraints. Open and extend scores must be

negative, constraining us to the lower left quadrant of the two-dimensional score space.

We can then add one linear constraint for each alignment in +, to force it to score at

 70

least zero23. Using linear programming, we find a point that satisfies all constraints and

maximizes margin (or some other desirable feature). If no such point can be found, the

intersection of the constraints is empty; this means there is no solution for this value of .

Otherwise, the solution point is a score vector potentially satisfying criterion (1).

We use this vector with each sample, in turn, finding an optimal alignment (the

alternative) of its two sequences. If for every sample the original alignment scores as

well as the alternative found (with consideration for), then we have a solution. If some

sample fails, it is easily converted into an additional linear constraint that will make the

original score as well as the alternative (again, with consideration for). We add this

constraint to the set and solve again. Eventually we will either find a solution or reach a

point where the constrained space is empty, indicating that is not viable. The minimum

value of can be found by a simple binary search over a reasonable search interval, such

as (0,1)24.

The author attempted to use this as part of an iterated score inference scheme,

using substitution scores inferred as per Chiaromonte et al. (2002). However, as a

function mapping one set of gap scores to another, this process behaves badly. Small

changes in the input gap scores led to vastly different output scores, seemingly without

rhyme or reason. This would produce very poor convergence behavior.

We feel the method has promise, though, and deserves further study. Kececioglu

and Kim (2006) have shown some success in inferring protein alignment scores.

23 Allowing the possibility that an optimal alignment has a negative score would disallow sub-optimality. If
score(optimal alignment B)<0, (D.1) could be satisfied only when A is also optimal and =0.

24 A solution for =1 means all alignments score at least half as high as an optimal alignment.

 71

Appendix E

Seed Packing

In this section we discuss how redundancy is removed from the seed word,
allowing it to be used as an index for the seed word position table (section 4.2, figures 4.1
and 4.2). The seed word covers L nucleotides, which must be reduced to a 2W-bit index.
The scheme presented here reduces the number of operations necessary for packing
seeds. This has a negligible effect on the overall performance of LASTZ—seed packing
is only used during the seeding stage, which is overwhelmed by the gapped alignment
stage. Nonetheless, we include this discussion because in other computational contexts
this reduction may be effective.

Nucleotides are encoded in the seed word as a concatenation of two bit fields,
encoding A as 00, C as 01, G as 10 and T as 11. This particular encoding was chosen so

that it is easy to determine if a base is a purine (A or G, second bit 0) or pyrimidine (C or

T, second bit 1). Moreover, when comparing two aligned bases we can quickly determine

whether they are a transversion (second bit different) or not (second bit the same). The
seed word’s L nucleotides are thus encoded as a 2L-bit value. Similarly, we encode the
seed pattern two bits per position; matches are encoded as 11, don’t-cares as 00, and

transition-matches as 01.

The simplest scheme for packing the seed word would simply remove the bit
positions that are zero in the pattern, shifting bits to the right to fill the holes while
retaining the order of bits in the unpacked word (figure E.1(a)). Maintaining bit order is
unimportant, though, and by sacrificing it we can (in nearly all cases) reduce the number
of operations needed for packing. Figure E.1(b) gives an example.

This packing method can support T-matches at no additional cost. By encoding a
T-match as bit pair 01, the packed seed retains for that position only the bit

distinguishing between purine and pyrimidine. If two seed words have the same bit in
that position, they either match or are a transition. Figure E.1(c) shows an example of
packing a seed containing a T-match.

The packing of any seed pattern can be performed by a series of shift-and-mask
operations. Given a seed, how can we find the best packing? Since LASTZ allows the

 72

user to specify any seed, it is imperative that it can quickly find an optimal or near-
optimal packing. LASTZ includes a greedy algorithm for this purpose. Starting with the
encoded seed pattern and initial goal pattern (the least significant 2w bits), it finds the
shift-and-mask operation that will cover the most bits in the goal. It then removes those
from both the pattern and the goal, and tries again. The result is never worse than the
simple scheme, and is usually much better. For all but nine of the ≈20,000 possible 12-of-
19 seeds, the greedy algorithm finds a packing with fewer than five operations.

 (a)

(b)

(c)

Figure E.1 Seed packing. (a) Straightforward packing of 12-of-19 seed pattern’s 38 bits

to 24 bits requires six shift-and-mask operations. (b) Same seed can be packed with only

three shift-and-masks. (c) Changing one position to a T makes an 111
2 -of-19 pattern; three

shift-and-masks are still sufficient to pack to 23 bits.

 73

Table E.1 Comparison of greedy seed packing to optimal for all 12-of-19 seeds.

optimal
operation count

greedy
operation count

number of seeds

2 383
3 463 2
4 18
3 9865
4 8465 3
5 8
4 244 4
5 2

Calculation of an optimal packing is a more computationally expensive

undertaking, searching for a shortest path of operations mapping the pattern to the goal25.

A meet in the middle search reduces the time and space drastically, but for many seeds,

especially those containing T-matches, it is still very costly. Table E.1 shows how well

the greedy algorithm performs, relative to optimal, for all 12-of-19 seeds containing only

matches and don’t-cares. For 54% of the seeds it finds an optimal packing, and for all but

0.13% of the seeds it is within one of optimal (26 seeds, shown in bold).

Unfortunately, allowing a general seed pattern incurs a run-time cost. A table

driven loop, performing one shift-and-mask each time through the loop, is no match for

the same series of operations hard-coded and optimized by the compiler. Figure E.2

uint32_t pack_seed (uint64_t word) {
 return (word & 0x00F0CCFF)
 | ((word >> 16) & 0x000F3000)
 | ((word >> 28) & 0x00000300);
}

Figure E.2 Hard-coded seed packing. Machine-written C routine implementing the seed

packing of figure E.1(b).

25 Care must be taken to ensure that no bit is “moved” more than once; multiple moves would prevent
parallelization at runtime.

 74

shows a C routine implementing the packing of the default 12-of-19 seed using the

operations discovered by the greedy algorithm (i.e. these are the same operations used in

LASTZ for this seed). Creating the seed position table for a 100Mbase sequence took 9.0

seconds when the operations in figure E.1(b) were performed by a general loop. Using

the hard-coded routine of figure E.2 reduced this to 7.7 seconds. For comparison, a hard-

coded routine implementing the operations in figure E.1(a) took 8.3 seconds. While the

reduced operation packing is about a 7% improvement, it represents a miniscule portion

of the overall alignment time.

The LASTZ distribution includes a program to convert a seed pattern to such a

routine, which can then be compiled as part of LASTZ. A better solution would be to

compile it to a dynamically linked module, and allow specification of the module on the

LASTZ command line.

VITA

Robert S. Harris is a Ph.D. candidate in Computer Science and Engineering at the

Pennsylvania State University. He received his Bachelor’s degree in Applied Math from

Carnegie-Mellon University in 1979 and his Master’s degree in Computer Science from

the University of Tennessee in 1993. Following a 20-year career in industry as a software

engineer and game designer, he entered the Ph.D. program at Penn State in 2003 and

shortly thereafter joined Webb Miller’s lab at the Penn State Center for Comparative

Genomics.

