Machine Learning is Revolutionizing Structural Bioinformatics

Jian Wang Nov 16, 2022

Biomolecules

PennState

Quantum Computation

Quantum computation supports calculating the dynamics of a **small molecule**

Molecular Dynamics Simulation

Newton's second law: $F = m \cdot a$

By using force field, molecular dynamics simulation supports the simulation of the dynamics of a **protein**

Molecular Dynamics Simulation

Graph

Chemical Compound

Protein Structure

RNA

Contents

Protein-ligand Interaction Prediction

Protein Allostery

Applications of Structural Bioinformatics

Non-coding RNA 3D structure prediction

1969

The first manually predicted tertiary structure of tRNA was regarded as a milestone in the emergence of bioinformatics

1989

The core of group I intron was solved based on extensive sequence comparisons, secondary structures, and published mutagenesis data.

1995 31 RNA 3D structures in PDB

2005 462 RNA 3D structures in PDB

Now

Only **4924** RNA 3D structures in PDB (>**165,266** proteins in PDB) **22,776,905** non-coding RNA sequences in RNAcentral

Difficulties in RNA 3D structure prediction

Distance distribution

Base pairing and base stacking information is implied in distance distribution

Backbone torsion angle distribution

Backbone conformation is implied in torsion angle distribution

Results in Test I, II, and III

Difficulties in RNA 3D structure prediction

Secondary Structure Tree

Fragment-assembly

Fragment-assembly

Fragment assembly is like **building blocks**.

Integrating Restraints

Restraints such as **hydroxyl radical probing (HRP), cross-linking, and direct coupling analysis (DCA)** can be used as restraints to improve RNA modeling

RNA 3D Structure Optimization

PennState

Test Results

Native, Optimize w/o restraints, Optimize w/ restraints

How many restraints should we impose?

When using more than **60**% of the contacts as constraints, the RMSD of the predicted model gets higher.

Difficulties in RNA 3D structure prediction

By using more restraints, there may be more energy barriers in the free energy landscape.

NN: local minimum state near the native state DN: local minimum state distant from the native state

Restraints Derivation

Distance Variation (DV): the difference between the minimum distance and the maximum distance between two residues

The larger the distance variation, the higher the **importance** of the corresponding restraint.

Difficulties in RNA 3D structure prediction

By sorting the constraints by the importance, we can use only the constraints that let us achieve the highest performance.

iFoldRNA

iFoldRNA v2	Dokholyan Group
Welcome to iFoldRNA Ver 2.0 - a web portal for interactive RNA folding simulations. We perform discrete molecular dynamics simulations of RNA using coarse-grained structural models (three-beads/residue).	Username: Password: Login
Important note: Please visit the Help Center before submitting your RNA foldig jobs. Especially, please read the section of "Choosing iFoldRNA simulation-time" for the appropraite simulation time.	Register Account
To cite iFoldRNA in your research, please use the following references: A. Krokhotin, K. Houlihan, and N. V. Dokholyan, "iFoldRNA v2: folding RNA with constraints" <i>Bioinformatics</i> , 31: 2891-2893 (2015). S. Sharma, F. Ding, and N. V. Dokholyan, "iFoldRNA:Three-dimensional RNA structure prediction and folding" <i>Bioinformatics</i> , 24: 1951-1952 (2008). F. Ding, S. Sharma, P. Chalasani, V. V. Demidov, N. E. Broude, and N. V. Dokholyan, "Large scale simulations of 3D RNA folding by discrete molecular dynamics: From structure prediction to folding mechanisms" <i>RNA</i> , 14: 1164-1173 (2008). We recommend you to carefully read the Terms of Use and the Privacy Policy. If you have any questions, please contact the iFoldRNA Team. How good is your RNA model? Submit the following form to estimate significance of RNA structure prediction Length of the RNA molecule: Predicted RMSD: Submit You may now download the source code for this tool here.	Username: Password: Confirm Pass: First Name: Last Name: Organization: Email: Register An Account

Contents

RNA 3D Structure Prediction

Protein Allostery

Applications of Structural Bioinformatics

Virtual Screening

Re-ranking Virtual Screening results Compound selection & *in vitro* assays

Molecular Docking

Time-consuming

QSAR (Quantitative structure-activity relationship)

Risk of highly inaccurate predictions of pharmacological or biological activity

Wang, Jian, and Nikolay V. Dokholyan. JCIM 59.6 (2019): 2509-2515. https://summerofhpc.prace-ri.eu/re-ranking-virtual-screening-results-in-computer-aided-drug-design https://www.cresset-group.com/software/forge-qsar-models/

MedusaDock

MedusaDock

MedusaDock website

MedusaĐock

Please specify the position or upload the structure of the binding site.

MedusaNet: Guiding Conventional Protein–Ligand Docking Software

MedusaNet: Guiding Conventional Protein–Ligand Docking Software

(a) MeudsaDock run less attempts with CNN guiding.

(b) Number of proteins found good pose by each approach.

MedusaNet improves both the efficiency and accuracy of MedusaDock

NeuralDock: Rapid and conformation-agnostic docking of small molecules

Congzhou Sha

Dr. Nikolay Dokholyan

Congzhou, M. Sha, Jian Wang, and Nikolay V. Dokholyan. bioRxiv (2021).

Comparison to traditional docking software

96000 protein-small molecule pairs Tesla T4 GPU, training in a week 937 million ZINC compounds took 21 hours on 25 GPUs

NeuralDock is comparable to traditional docking software Congzhou, M. Sha, Jian Wang, and Nikolay V. Dokholyan. bioRxiv (2021).

Target identification

Current compound-protein interaction prediction models

DeepDTA

Compound-Protein Interaction Predictor (Yuel)

The protein features and the compound features are multiplied to evaluate the pairwise residue-atom interaction.

Evaluation of the predictability of Yuel

Davis and PDBbind are dissimilar

Davis/Davis:Models are trained on Davis and tested on DavisPDBbind/PDBbind:Models are trained on PDBbind and tested on PDBbindDavis/PDBbind:Models are trained on Davis and tested on PDBbind

Testing CPIP in the datasets with the protein sequence shuffled

Shuffle the protein sequence in the test sets

When **shuffling** the protein sequences, DeepDTA and Deep-Conv-DTI still predict high affinity between the shuffled protein and the compounds.

Yuel can predict hotspot atoms and residues

Yuel can predict compound atoms that interact with the protein (**hotspot atoms**) as well as protein residues that interact with the compound (**hotspot residues**).

Contents

RNA 3D Structure Prediction

Protein-ligand Interaction Prediction

Applications of Structural Bioinformatics

Allostery in various heterogeneous materials

Allosteric Pathways and Critical Nodes

Residue Interaction Network

7:12 AM 46

Allosteric Correlation Intensity

Chemotaxis protein Y (CheY)

The phosphorylation of D57 residue of CheY can activate the binding of FliM and other flagellar motors at the distal binding surface.

Lee S-Y, et al. Nat Struct Biol 2001; 1: 52–56. Formaneck, et al. Proteins 2006; 63: 846-867.

Identification of the allosteric site in CheY

Critical residues in allosteric pathways of CheY

Allosteric correlation intensities in mutations of CheY

Prediction of All Residue-wise Allosteric Correlations

Ohm website

What is Ohm?

Allostery is a natural phenomenon in proteins whereby distal structural elements are dynamically coupled. The origins of the allosteric phenomenon are rooted in physical properties of inter-atomic interactions in heterogenous media. Protein sequences are heterogeneous and their corresponding structures represent a diverse range of forces

between amino acids that shape their structures. In proteins perturbations of amino acids will propagate nonuniformly throughout the structure: a residue that is stronger coupled to a neighbor, would be more affected by the perturbation of the neighbor.

Applications of Structural Bioinformatics

Contents

RNA 3D Structure Prediction

Protein-ligand Interaction Prediction

Protein Allostery

RNA Modeling in Nucleic Acid Nanoparticle Design

Dr. Kirill Afonin

RNA Modeling in Nucleic Acid Nanoparticle Design

Virtual Screening

https://summerofhpc.prace-ri.eu/re-ranking-virtual-screening-results-in-computer-aided-drug-design/

Targeting 6- and 7-transmembrane μ -opioid receptor isoforms

Conclusion

Designing new biomolecules

Graph Design

Policy network makes decisions and Value network evaluates the situation

Questions?

