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ABSTRACT 
Advances in DNA sequencing technology have fueled a rapid increase in the 

number of sequenced vertebrate genomes, and we anticipate an explosion in the number 

of genomes sequenced in the near future. Detecting similarities between genomes is a 

valuable technique in discovering functional elements, and sequence alignment is the 

primary tool for discovering similarities. The quality of alignments is affected by several 

user-specified control parameters. The parameters are so little understood that most users 

simply use default settings. We seek to change that, to have the program automatically 

infer appropriate parameter choices from statistics derived automatically from the 

sequences. 

We introduce a program, INFERZ, which addresses part of the inference problem, 

inferring substitution and gap scores according to a mathematically sound model. Further, 

we explore the usefulness of iterating inferred scores to convergence. We test this process 

on both simulated and actual genomic data, and show that iteration will converge in 

general, but found that converged scores were not a consistent improvement. 

INFERZ has a synergistic relationship with LASTZ, our improved drop-in 

replacement for the widely used alignment program BLASTZ. INFERZ makes repeated 

calls to LASTZ to test score sets, and LASTZ provides the user an option to have 

INFERZ decide what scoring parameters to use. Compared to BLASTZ, LASTZ adds a 

richer set of seeding strategy choices, supports alignment to probabilistic sequences and 

reduces memory requirements. Additionally, disciplined software techniques make it a 

better platform for continued experimentation. 
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Chapter 1 

Introduction 

1.1 Motivation 

Over the past decade, advances in DNA sequencing technology have produced 

whole genome sequences for an increasing number of species. This increase has spurred 

the field of comparative genomics, in which sequences from many species are compared 

in silico to reveal highly similar segments common to many species. A high similarity 

level is indicative of the presence of conserved elements from a common ancestor. As 

evolution operated along the different branches leading to the present-day species, these 

elements suffered fewer mutations, maintaining more of their similarity than the genome 

in general. The prevailing explanation is that such elements must be under selective 

pressure, and they are expected to have important biological function. 

The basic tool for identifying inter-species similarities is a sequence aligner. 

Given sequences of DNA, an aligner identifies segments in one sequence that are similar 

to segments in another. Similarity is defined mathematically, reflecting evolution by 

rewarding nucleotide matches and penalizing mutations such as mismatches, insertions 

and deletions. An aligner seeks the segments of highest similarity. 

What constitutes high similarity depends on the species being compared and the 

evolutionary distance between them. For example, identifiable conserved elements 

between human and macaque are, on average, 90-95% identical, while in the more 

distantly related chicken average identity is in the 65-70% range. In the latter case, the 

signal is weaker, and it is more difficult for an aligner to distinguish real homology 

(biological relatedness) from similarities that occur by chance. To achieve best 

performance—balancing sensitivity and specificity when aligning to a newly sequenced 

genome—the aligner’s control parameters must be tweaked. Present aligners require the 

user to choose these parameters but offer little guidance on how the choices should be 

made. We seek to change this, to make alignment closer to a turnkey operation by 
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building control choices into the aligner. We want the aligner to take a quick look at the 

sequences and infer good control choices before proceeding with alignment.  

A method for inferring substitution scores from sequences was proposed in 

Chiaromonte et al. (2002), and was used to create the default scoring matrix for BLASTZ 

(Schwartz et al., 2000, 2003). Inferring gap scores that work well in practice has been 

more elusive, and in practice they are set by intuition. As an example of current scoring 

practices, we note the scoring used for the BLASTZ stage of multiple alignments for the 

UCSC genome browser. The default scores, which were originally chosen for human vs. 

mouse, are used to align human to species ranging (in distance from human) from rhesus 

to mouse. For species more distant from human, ranging from opossum to lizard, a 

second scoring matrix is used, reducing mismatch penalties by about 25% across the 

board, with no change in gap scores. The very close chimp species has its own scoring 

matrix, with much stiffer mismatch and gap penalties. 

In addition to substitution and gap scores, a turnkey aligner must also make 

choices for seeding strategies and score thresholds, saving the user from uninformed 

choices. 

In this thesis we deal only with pairwise alignment, in which only two sequences 

are involved. When we use the words “aligner” or “alignment”, we mean pairwise. 

Moreover, we are primarily interested in aligning DNA sequences, in which the alphabet 

consists only of the four characters A, C, G and T. However, we do generalize this to 

allow one of the sequences to be probabilistic profiles, which we call quantum DNA 

(section 4.4). 

The author has incorporated the ideas presented here in INFERZ, a program to 

infer scoring matrices, and LASTZ, a replacement for the widely used BLASTZ. Further 

enhancements have been made to reduce memory usage, to increase the size of sequences 

that can be aligned on modern desktop workstations with 1G byte of memory. The 

practical limit, for the current implementation of LASTZ on a 1G machine, is 

125Mbases, about half the length of the longest human chromosome. LASTZ can 

perform full chromosome-to-chromosome alignments in 2G of memory. 



  3 

As a result of its generality, LASTZ, in its current implementation, is about 20% 

slower1 than BLASTZ. The gapped alignment stage of LASTZ is nominally faster (about 

2%) and for I/O. However, these advantages are overwhelmed by the per-bp cost of 

general seeding strategies, and of some memory-for-time tradeoffs. The reduced memory 

usage of LASTZ provides a window of speed improvement for large sequences. On a 1G 

machine BLASTZ hits the memory limit when sequences reach about a 100M bases; 

memory swapping reduces performance above this point. For LASTZ this occurs at 

around 125M bases. 

Another goal of the author’s work was to improve the state of the source code in 

BLASTZ. The original BLASTZ grew out of several years of work by three authors, 

Scott Schwartz, Zheng Zhang and Webb Miller, each with different coding styles. In 

addition, some of the source code was collected from parts of earlier programs, leading to 

inconsistent terminology within the code. LASTZ is nearly a complete rewrite, by a 

single author, with consistent style and terminology, and a greater emphasis on internal 

documentation. This makes it a better platform for continued experimentation. 

The author expects to continue improving INFERZ and LASTZ, but current 

implementation includes the following major improvements: 

 

INFERZ: 

• Simple inference of substitution scores. 

• Iterated inference of substitution scores. 

• Iterated inference of gap scores. 

                                                

1  All timing tests were run on a 2GHz Intel Dual iMac with 1GB, lightly loaded. 
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LASTZ (compared to BLASTZ): 

• A wider range of seeding choices, including twin hit seeds, transition-

match seeds, multiple transitions and user-definable seed patterns. 

• Reduced memory requirements, allowing processing of larger sequences 

on a 1G machine. 

• Use of larger alphabets (up to 255 symbols) for one sequence, to support 

alignment of quantum DNA sequences. 

• Multiple output formats, including the widely used MAF and AXT. 

• Single-author rewrite, providing a better platform for future 

experimentation. 

 

1.2 A Brief Introduction to Sequence Alignment 

Sequence alignment involves finding similarities between two sequences. Given 

two sequences of symbols from some alphabet

! 

" , we can construct an alignment of a 

subsequence of each by first inserting spaces into the subsequences so that they have the 

same length, then arranging the modified subsequences as two rows, one above the other, 

subject to the constraint that no column contains only spaces. Columns without spaces are 

called matches or substitutions, while runs of spaces are called gaps. Figure 1.1(a) shows 

an example alignment. 

 Alignments provide a natural definition of the similarity between sequences. 

Given a scores set {

! 

sxy ,

! 

sopen ,

! 

s
extend

}, each match is scored as 

! 

s
xx

, each substitution as 

! 

sxy , 

each gap of length n as

! 

sopen + nsextend and the alignment as the sum of its component 

scores. Scores are usually positive to reward matches and negative to penalize 

substitutions and gaps. Charging separate penalties for the presence and length of a gap is 

called affine-gap scoring. Figure 1.1(b) shows typical scores for aligning DNA. The 

similarity between two sequences is the maximum score of any alignment between them, 

and alignments giving the maximum score are called optimal. It is often instructive to 
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view an alignment as a dot-plot, which shows the positions of each aligned pair as a point 

in a Cartesian space indexed by one sequence along each axis. 

Given two sequences X and Y, it is possible to find the similarity between two 

sequences using a dynamic programming algorithm (Smith and Waterman, 1981; Gotoh 

1982). We use the notation |X| to indicate the length of X, and X[1..i] to represent the 

length-i prefix of X, or an empty sequence when i is zero. Define Si,j to be the similarity 

between X[1..i] and Y[1..j]. Then S has the recurrence relation (1.1) and the similarity of X 

and Y is S|X|,|Y|. 

 

(1.1) 

 

 

 

(a) sequence 1:  ...GAAAACTCTGGTAAATCTTGAGGTGAAG-----GGGAGGCAC... 
sequence 2:  ...GAAAAC----------CTTGAGGCAAAGATGGAGGGGGGCAC... 

 A C G T  
A 91 -114 -31 -123 open -400 
C -114 100 -125 -31 extend -30 
G -31 -125 100 -114  

(b) 

T -123 -31 -114 91  

 
(c) 

 
 Features:  AA:8 CC:4 GG:11 TT:2 AG:1 GA:1 TC:1 O:2 E:15 
 Scores: 728 400 1100 182 -31 -31 -31 -800 -450 
 Total:  1067 

Figure 1.1 Alignment and scoring example. (a) An alignment of the DNA sequences 

GAAAACTCTGGTAAATCTTGAGGTGAAGGGGAGGCAC and GAAAACCTTGAGGCAAAGATGGA 

GGGGGGCAC. (b) Scoring parameters. The matrix entry at row x column y is the score for 

aligning an x in the first sequence with a y in the second. (c) Score calculation. The 

features from the alignment are counted and multiplied by the corresponding score. 
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A simple dynamic programming algorithm follows directly from recurrence (1.1), 

with O(|X| |Y|) complexity in time and memory. Keeping traceback information for each 

i,j allows the identification of an optimal alignment, with no increase in complexity. 

Excluding negative values of Si,j, as in (1.2), allows us to identify similar subsequences. 

 

(1.2) 

 

 Memory complexity can be reduced to O(|X|) by scanning row by row and only 

keeping the latest value computed in each column, along with one extra ‘lag’ variable to 

keep track of the diagonal cell from the previous row. Time is still quadratic, however, 

and for large problems heuristic methods are necessary to reduce time requirements. 

Rather than compute values for the entire dynamic programming matrix (DP 

matrix), heuristics are used to reduce the search to small regions of the matrix where the 

highest similarities are more likely. While algorithms based on recurrences (1.1) and 

(1.2) are guaranteed to find optimal alignments, they are not feasible for large sequences 

due to the quadratic time complexity. Alignment programs must use heuristic methods to 

guide the search to the small fraction of the DP matrix that contains high scoring 

alignments. Heuristics incur a loss of sensitivity, thus sensitivity becomes an important 

consideration in choice of heuristics. 

The anchored alignments that will be discussed in section 2.3 are found using a 

variation of recurrence (1.1). The alignment is required to include a fixed starting point, 

but for the other endpoint we choose the maximum score anywhere in the DP matrix. The 

portion of the DP matrix actually computed is also reduced. 
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1.3 Quantum Alignment 

In many problems the sequences being aligned contain a certain amount of 

uncertainty at each position. For example, suppose we have the present day DNA 

sequence of the same gene in several species. Though the ancestral species no longer 

exists, the ancestral sequence of this gene can be inferred from the present day sequence. 

One can establish the probability that each position in the ancestral sequence contained a 

particular nucleotide. 

One solution is to discard the probabilities after inference and project the ancestral 

sequence to the most likely bases. Instead, we permit sequences that represent a base as a 

probability distribution over the symbols A, C, G, and T. To simplify discussion, we have 

coined the term quantum nucleotide (shorthand q-DNA) for such a distribution, in 

analogy with the field of quantum mechanics2, and quantum sequence (shorthand q-

sequence) for a sequence composed of q-DNA3. 

With an appropriate scoring scheme, quantum sequences can be aligned to DNA 

sequences or to other quantum sequences. Recurrence (1.1) is still applicable. However, 

the heuristic methods used for large problems often take advantage of the small alphabet 

of DNA, and must be altered to accommodate the infinite quantum alphabet. A truly 

infinite alphabet presents additional challenges; for the sake of efficiency we project 

quantum bases onto a finite alphabet that allows us to implement sxy of recurrence (1.1) 

by a table lookup. This introduces an additional problem of how best to choose the 

alphabet. 

1.4 Related Work 

Sequence alignment has been studied since the 1960s, originally motivated by 

document comparison and text queries, with eventual adoption for comparison of protein 

and DNA sequences. Early seminal work is due to Levenstein (1966), Needleman and 

                                                

2  In quantum mechanics, measurable properties such as energy or position (whether continuous or discrete) 
are represented by probability distributions rather than definite values. 

3  The author realizes that there are many names in the literature for the same concept, among them 
profiles, weighted sequences, and probabilistic DNA. But no term has won exclusive use, and many 
suffer from easy confusion with other concepts. 
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Wunsch (1970), Smith and Waterman (1981) and Gotoh (1982). A recent survey of the 

state of the field is provided by Batzoglou (2005). 

Alignment of probabilistic DNA sequences has recently become a topic of interest 

in the field. Hudek (2005) aligns sequences of ambiguous DNA inferred from multiple 

alignments, but discards probabilities from the sequences. Flannick and Batzoglou (2005) 

reduce a multiple alignment to a sequence of probabilistic profiles over {A,C,G,T}, but in 

contrast to our research also include a probabilistic gap at each position, and align to the 

sequence of most-probable bases rather than the probabilistic sequence. In the MAVID 

multiple aligner, Bray and Pachter (2004) infer probabilistic sequences similar to ours, 

but reduce them to sequences of most-probable bases prior to alignment. 
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Chapter 2 

BLASTZ-type Aligners 

BLASTZ (Schwartz et al. 2003) is a pairwise DNA sequence aligner originally 

patterned after Gapped Blast (Altschul et al. 1997; Zhang et al. 1998). Initially designed 

as a piece of the PipMaker server (Schwartz et al. 2000), it has received widespread use 

in the scientific community, serving, for example, as the first stage in generating whole 

genome alignments for the UCSC Genome Browser (http://genome.ucsc.edu). A major 

contribution of BLASTZ was a reduction in memory requirements, allowing sequences of 

a few million base pairs to be aligned. As longer sequences have become more prevalent, 

BLASTZ has again reached the point of being constrained by memory. 

What follows is a simplified presentation of the program. The actual program has 

many parametric choices, which we will discuss in later sections. BLASTZ is optimized 

to preprocess one sequence (which we call sequence 1) and then align several queries to 

it (we will use sequence 2 or query interchangeably). The algorithm consists primarily of 

the following stages: seeding, gap-free extension, chaining, anchoring, gapped extension 

and interpolation. Both BLASTZ and LASTZ include a few other features, such as 

dynamic masking, which will not be discussed in this thesis. 

2.1 Seeding and Gap-free Extension 

 The seeding stage identifies short near-matches (seed hits) between sequence 1 

and 2. In general, a seed pattern/rule determines what constitutes a near-match of some 

length L, but for this discussion it is enough to think of a seed hit as a perfect match of 

two L-mers. More sophisticated seeding strategies are used in practice, discussed in 

Chapter 3 and section 4.1. 

A preprocessing pass parses sequence 1 into overlapping seed words of length L. 

Each word is converted to a value, called the packed seed word (usually requiring fewer 

bits than the seed word) according to the seed pattern (discussed in more detail in Chapter 

3). These (seed, position) pairs are collected in a table. Conceptually, the table is a 
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mapping from a packed seed value to a list of the sequence 1 positions where that seed 

occurs. The seed word position table is one the major space requirements of the program, 

and we discuss design choices in section 4.2. Both time and memory required for seeding 

can be decreased by using sparse spacing. Instead of storing a seed word for every 

position, positions are stored only for multiples of z (the z-step). Large values of z (e.g. 

z=100) incur a loss of sensitivity, at least at the level of seed hits. However, to discover 

any gapped alignment we only need to discover one seed hit in that alignment (of many), 

so the actual sensitivity loss is small in most cases. Section 6.2 discusses the effect of z-

step on the end result. 

To locate seed hits, the query sequence is then similarly parsed. Each query seed 

is used as an index into the position table to find the sequence 1 positions that ‘hit’ that 

  

  
 (a) (b) 

Figure 2.1 Alignment stages. (a) Seed hits and HSPs. Heavy lines are seed hits, short gap-

free near-matches. Seed hits are extended to create HSPs (thin lines). Seed hits with no 

HSP had low scoring extensions. (b) Anchors and gapped alignment. Anchors (blue dots) 

are single points in highest scoring window of each HSP. Anchors are extended to form 

gapped alignments (gaps in red). Anchor shown without alignment had low scoring 

extensions which were discarded. 
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seed. As each seed hit is found, it is extended without allowing gaps to determine 

whether it is part of a high-scoring segment pair (HSP). The hit is extended along the 

diagonal4 in both directions, using the score values 

! 

sxy  to accumulate the score of the 

extended match. In each direction, the extension is stopped whenever a segment with a 

large negative score is encountered (negative of the ‘x-drop’ threshold). These negative 

scoring ends are then trimmed. If the resulting score meets the ungapped alignment score 

threshold (K) it is an HSP and is kept for further processing. Matches at do not meet the 

score threshold are discarded. An additional filtering step eliminates hits with low 

entropy. An example of this process is shown in figure 2.1(a). 

 Usually an HSP will contain several seed hits. Extending each of these hits would 

result in the same HSP several times. This is prevented by rejecting seed hits that overlap 

previous extensions (even extensions that failed to produce an HSP). Hits along any 

diagonal are processed in increasing order (see the discussion of the seed word position 

table in section 4.2). Thus we only need to keep track of how far we have progressed 

 

 

Figure 2.2 Y-drop alignment region. The boundaries of the region are points scoring 

much lower than the possible maximum. 
                                                

4  A diagonal is a set of DP cells (i,j) that have a constant difference i-j.  The diagonal is often referred to 
by this difference. 
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along each diagonal; if a new hit occurs to the left of progress on its diagonal, we can 

quickly discard it. The storage of this diagonal extent table is also a major space 

consideration, and will be discussed further in section 4.2. 

2.2 Chaining 

The chaining stage finds the highest scoring series of HSPs in which each HSP 

begins strictly before the start of the next. All HSPs not on this chain are discarded. This 

is useful when elements are known to be in the same relative order in the query as in 

sequence 1. Briefly, the chaining algorithm is an example of sparse dynamic 

programming. It processes the HSPs in order along sequence 1, building chains by adding 

the next HSP to the best previous viable chain. 

2.3 Anchoring and Gapped Extension 

Every remaining HSP is reduced to a single point to be used as an anchor for 

gapped alignment. A constant-width window is slid across the HSP and the midpoint of 

the highest-scoring window is chosen as the anchor. 

The anchors are then processed in order of the score of their HSP (highest score 

first). One-sided extension is performed in both directions from the anchor point, the two 

resulting alignments are joined at the anchor, and if the score meets the gapped alignment 

score threshold (L) it becomes an alignment in the output file. One-sided extension is 

computed per recurrence (1.1), beginning at the anchor and ending at the highest scoring 

point. The portion of the DP matrix considered is reduced by disallowing low-scoring 

segments (Zhang et al., 1998); wherever the score drops further below the known least 

possible maximum than the y-drop threshold, the DP matrix is truncated and no further 

cells are computed along that row. An example of the resulting search range is shown in 

figure 2.2, while figure 2.1(b) shows an example of the overall gapped alignment results. 

2.4 Interpolation 

Once gapped extension has been performed, it is not uncommon to have regions 

leftover in which no alignment has been found. In the interpolation stage we repeat all 
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previous stages, in these leftover regions, at a higher sensitivity. For example we could 

use a lower weight seed or a lower scoring threshold. Using such high sensitivity from 

the outset would be computationally prohibitive, but is feasible on the smaller, leftover 

regions. 
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Chapter 3 

Spaced Seeds 

As noted earlier a common heuristic is to focus alignment search in the vicinity of 

seed hits, short matches or near matches. The seed hit is evidence of a larger similarity 

between the sequences. Early aligners commonly required exact matches for seed hits. 

However, allowing some mismatches in seed hits can increase sensitivity with no loss in 

specificity (Ma et al. 2002). 

To understand how sensitivity is improved, consider the following example. 

Suppose we have a 20 bp homologous sequence that has undergone substitution 

mutations, but no insertions or deletions, to the extent that each base has only a 70% 

chance of matching in the present day sequences (pmatch = 70%). If we require an exact 

match of 5 consecutive bases for a seed hit, then we must have such a match somewhere 

among the 20 bp or we will fail to discover this homology. The chance of having at least 

one 5-bp match is only 73%. 

Now suppose instead that our seed hit requires 5 matching bp, but allows one 

mismatch between the 3rd and 4th match. We describe this seed pattern as 111011, with 

the 1s representing required match-positions and the 0 representing a don’t-care position. 

This pattern has the same specificity as the exact match (the expected number of hits is 

same), but the chance of it occurring at least once among the 20 bp is 80%. The weakness 

of the first seed is due to the fact that, as we advance along the sequence with the first 

seed, any mismatch knocks us all the way back to the beginning of our pattern, 5 steps 

from success. With the second seed, a mismatch after 3 or 4 matches simply bumps us 

back a couple steps; we’re still only two steps away from success. 

We call a seed pattern containing don’t-care positions a spaced seed5. The number 

of positions in the seed is called its length L, and the number of required matches is its 

weight W; we call such as seed a W-of-L seed. Any spaced seed will have higher 

                                                

5  In the literature, the term “seed” is often used interchangeably for a seed pattern, seed word or seed hit. 
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sensitivity than an exact match seed of the same weight, provided the homology is long 

enough and/or pmatch is high enough. However, for a given homologous length h, the 

weight-W exact match can ‘hit’ in h+1-W positions, while the (L,W) spaced seed can 

only hit in h+1-L. For h shorter than some cutoff, the exact match is more sensitive. This 

makes ‘light’ seeds, with a large proportion of spaces, less useful. 

The sensitivity of a seed has a complicated relationship to its pattern. Two similar 

seeds, having the same length and weight but disagreeing only in the position of one 

don’t-care position, can have much different sensitivity. Further, sensitivity depends on 

the evolutionary substitution rate of the sequences. One seed may be better for a 95% rate 

while another may be better for 70%. 

A seed’s sensitivity can be computed by transforming its pattern into a 

deterministic finite automaton that accepts strings containing that pattern, then computing 

the probability that a random string (according to some evolutionary model) will be 

accepted (Buhler et al., 2003). Some seed(s) will be optimal, having the highest possible 

 

 

 

Figure 3.1 Seed sensitivity distribution. Distribution of the probability of discovering a 64 

bp homology with 70% identity for all 12-of-19 seeds. The median seed has sensitivity at 

least 94% of the optimal (0.355), and the 90th percentile is at least 97% as sensitive. 
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sensitivity for a particular model; Buhler has studied optimality extensively under a 

variety of evolutionary models. 

Computation of a single seed’s sensitivity appears to be exponential in the number 

of don’t-care positions, and the number of patterns grows exponentially with the length. 

Finding optimal seeds by exhaustive evaluation is computationally impractical, and the 

result is a seed that is only known to be optimal for a particular evolutionary model. But 

many seeds are close to optimal (see figure 3.1). So the more computationally efficient 

strategy of trying several random seeds and picking the best may be adequate for most 

uses. 

BLASTZ makes use of a specific 12-of-19 seed based on seed shown to be 

optimal for 64 bp homologies with 70% identity (Ma et al., 2002; Schwartz et al., 2003). 

The user may also choose a 14 of 22 seed or an exact match seed of any length. Both 

seeds also allow a transition mismatch in any one of the seed’s match positions, 

increasing sensitivity. 

We discuss additional seeding strategies in section 4.1. 
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Chapter 4 

LASTZ 

With the rapid acceleration of sequencing technologies, the effort required to tune 

BLASTZ for each new genome sequence has become more of a nuisance. Further, 

choosing appropriate tuning parameters still seems more art than science, and the 

necessary insight is in the hands (or minds) of a few. A major goal of LASTZ is to 

change that, to have the program derive suitable tuning parameters from the sequences 

themselves. Toward that end, LASTZ acts as a tool bench for experimenting with 

alignment strategies. 

LASTZ supports all the capabilities of BLASTZ, but extends them, providing a 

richer variety of seeding strategies, reducing memory requirements and aligning quantum 

sequences. 

4.1 Seeding Strategies 

The run time of BLASTZ-type aligners is greatly affected by seed specificity. 

Low specificity equates to a high number of false seed hits, requiring extra computation 

during gap-free extension. Further, the number of false seed hits scoring high enough to 

become HSPs increases the run time during gapped extension. Many seeding strategies 

have been proposed in the literature, and LASTZ adds support for user-specified seed 

patterns, transition-match positions, half-weight seed patterns, double transitions, and 

twin hit seeds. 

User-specified seed patterns. To facilitate experimentation with seed patterns, 

LASTZ allows the user to directly specify the pattern as a string of 1 (match), 0 (don’t-

care) and T (transition-match) positions. 
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Transition-match positions. A transition-match or T-position allows a match or 

transition mismatch, but not a transversion6. Transition-matches were introduced in the 

literature by Sun and Buhler (2006)7 and were further studied by Zhou and Florea (2007). 

Because of its effect on specificity, a T-position contributes the value of 1/2 position to 

seed weight. 

Half-weight seed patterns. LASTZ adapts the idea of Hou et al. (2007), allowing 

patterns restricted to transition-match and don’t-care positions. An additional filtering 

stage is added between seed hits and gap-free extension. The number of matches over the 

length of the seed word must meet a specified lower bound, and the number of 

transversions must obey a specified upper bound. Note that hits for a half-weight seed 

without don’t-care positions will not contain any transversions. 

The main advantage of a half-weight seed is that it allows a longer seed length 

without using additional memory (see Appendix E). Further, it allows more general 

mismatch cases than simple spaced seeds. For example, the 12-of-19 seed 

1110100110010101111 allows up to 7 mismatches but only in specific positions. The 19-

of-19 half-weight seed can be specified to allow 7 mismatches in the seed word, 

regardless of position, and uses less memory than the 12-of-19 seed. 

The mathematical properties of half-weight seeds have yet to be fully explored. It 

appears that a length 2L half-weight seed, with no spaces, should be more sensitive than a 

length L exact match seed, and this is supported by some experimental results in Hou et 

al. (2007). Half-weight seeds were implemented to support those experiments, but have 

not been investigated further. Ideally, we would like to be able to show that a spaced half-

weight seed is more sensitive than the equivalent seed with 1-positions replacing the Ts. 

The name half-weight comes from the fact that, since the seed contains only T-

positions and don’t-cares, its weight is half that of the equivalent seed with 1s instead of 

Ts. 

                                                

6 A T-position should not be confused with the allowance of a single transition in a match-position.  The 
former allows any number of transitions, but only in specific positions.  The latter allows only one, but in 
any match-position. 

7 The author's own implementation of T-positions dates to late 2004, the same time frame in which Sun and 
Buhler first submitted their 2006 paper. 
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Double transitions. LASTZ can allow up to two transitions among the match-

positions in a seed. The computational cost is a factor of about W/2 when scanning the 

query during seeding. 

Twin hit seeds. For sequences with high similarity, BLASTZ seeding strategies 

are too sensitive, resulting in too many seed hits. LASTZ allows the requirement of two 

nearby hits on the same diagonal before gap-free extension is performed. The user can 

specify the range of the gap length between the seeds (the gap may also be negative, 

indicating overlapping seed hits). 

Section 6.3 describes experimental results for twin hit seeds. 

Floating-point scoring. A separate build of LASTZ treats scores as floating-point 

values. This was useful in studying iterative scoring inference, without having to worry 

about truncation effects. 

4.2 Memory Requirements 

One of the author’s goals for LASTZ was to reduce memory requirements to 

increase the size of sequences, and the weight of seeds, that could be used within the 

memory constraints of a desktop workstation with 1 GB memory. The primary 

components with potential for consuming memory are the two sequences, the seed word 

position table, the diagonal extent table, the dynamic programming array, and traceback. 

For convenience in this discussion, we define the following terms, and consider a 

large chromosome to be 250M bases. 

L1,L2 = length of sequence 1 and 2. 

W = seed weight 

Z = z-step 

V = fraction of ‘viable’ seed words in sequence 1. 
 

A seed word is viable if it contains no masked or ambiguous bases8. It is not 

uncommon for V to be around 50%. For example, in the 44 ENCODE regions (ENCODE 

                                                

8  Genomic DNA contains many repeat elements—segments that have been replicated at some point in the 
past.  A common practice in the preparation of genomic DNA prior to wide scale alignment is to identify 
repeats and “mask” them by using lowercase a, c, g and t.  In addition, sequences often contain bases for 
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Project Consortium 2004), V ranges from 38 to 63% in human, with only one region 

below 45%. 

Sequences. (memory required: 2L1+2max(L2)). Both sequences are stored 

internally at one byte per base. Of multiple queries, only the current query is resident. A 

second copy of each sequence is stored, giving the sequence in reverse order to save 

gapped alignment the concern of directionality. For two large chromosomes, these total 

1G. There is opportunity for savings here, at the expense of speed. First, the reversed 

sequence copies could be eliminated by having four different copies of the gapped 

alignment routine (one for each combination of sequence direction). This would require 

no run-time cost but would incur a cost in source code maintenance. Second, DNA 

sequences could be packed four bases per byte after the seeding stage. While building the 

position table, we need access to masking information in the sequence but if sequence 

input parsing was more tightly coupled with position table building this could be 

accomplished with a small constant sized buffer, building the position table and packed 

sequence at the same time. Similarly, when scanning sequence 2 for seed hits, we also 

require masking information, but could build the packed sequence during the seed hit 

scan. 

Both sequences are needed for gap-free and gapped extension, and having them in 

packed form would slow down both processes. Additionally, sequence 2 may require 8 

bits per symbol if it is a quantum sequence. For these reasons, we chose not to pack the 

sequences. 

However, for overweight seeds (section 4.3) we do construct a packed version of 

sequence 1, requiring an additional L1/4 bytes. This is another tradeoff of memory for 

speed. Having the packed version resident saves us the time of repacking each seed word 

to resolve a seed hit. 

Seed word position table. (4(4W+(L1/Z)). The position table must provide a 

mapping from a seed word to a list of the positions where that word occurs in sequence 1. 

For large seeds and/or long sequences, the table can be very large. Several schemes were 

                                                                                                                                            
hard-to-sequence regions where the actual nucleotides are not known. These ambiguous bases are 
represented by N. LASTZ does not allow masked or ambiguous bases as part of seed hits.  
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considered, but in the end we chose between two options, which we call linked list and 

last/previous. Last/previous is the scheme used in LASTZ, but we will describe both 

here. 

The linked list scheme is shown in figure 4.1. A pointer table indexed by seed 

word contains pointers to linked lists. Each list element contains an index into sequence 1 

and a pointer to the next element. Elements are allocated on an as-needed basis (in 

blocks9) and only seed words positioned at multiple of z are stored, so only VL1/Z list 

elements are needed. On a 32-bit machine, the pointer table requires 4x4W and the list 

elements 8VL1/Z. On a 64-bit machine, pointers are 8 bytes. List elements could 

conceivably be stored in 12 bytes, but many compilers (including the widely used gcc) 

store them in 16 bytes. So the requirements double, to 8x4W+16VL1/Z. 

The last/previous scheme is shown in figure 4.2. A position table (Last) indexed 

by seed word contains the index into sequence 1 of the last position containing that seed 

word. A second table (Previous), indexed by sequence position, provides the position 

of the ‘previous’ occurrence of the same seed word10. A zero is used to terminate the 

chain11. Since only seed words positioned at multiples of z are stored, the table contains 

space only for those positions, and contains L1/Z entries. Since the tables store sequence 

positions instead of pointers, memory requirements are the same regardless of processor 

word size. Last requires 4x4W and Previous 4VL1/Z. 

For highly masked sequences the linked list version will use less memory. On a 

32-bit machine, the break-even point is V=50%, which is a typical value for human 

sequences. On a 64-bit machine the linked list version will use less memory only when 

V<=(1/4)-(4^W-1)(Z/L1) <= 25%. 

Unfortunately, neither method has good cache behavior. As we parse each 

sequence into seed words, the accesses to the pointer table, or to Last, have no locality. 

                                                

9 The overhead (both memory and time) for allocating list elements one-at-a-time can be extremely 
detrimental to performance. 

10  More formally, previous[i] = max j such that seedword(sequence1[j]) = seedword(sequence1[i]). 
11  Internally, we actually store the position of the end of the seed word rather than the start, so zero is never 

used for a valid seed word. 
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Nor do accesses to Previous exhibit locality. For the linked list scheme, a post 

processing step on the list elements, following construction of the table, could organize 

them to be more cache friendly while processing the second sequence. 

A useful side effect of both schemes is that, since the query sequence is scanned 

in increasing order, hits along any diagonal are also processed in increasing order. This 

facilitates the implementation of the diagonal extent table. 

Other data structures for locating seed hits have been presented in the literature. 

Gusfield (1997) applies a suffix tree to the problem of finding exact substring matches 

between two strings. While a suffix tree leads to an O(n) solution for exact matches, the 

space requirements can be daunting. Typical implementations require 20 bytes per 

sequence character, according to Lippert (2005)12. The Burrows-Wheeler transform 

(Burrows and Wheeler, 1994) can reduce space to 2.5 bits per sequence character 

(Lippert, 2005), and provide exact matches in O(n log n) time. Neither structure appears 

suitable for finding all partial matches similar to spaced seeds. While Gusfield (1997) 

presents O(n) solutions to several partial match problems, these all involve finding only a 

single partial match. Lippert (2005) gives a partial match method, but it involves 

searching for O(2k) matches, where k is the number of mismatches allowed. 

Cameron (2006) stores the equivalent of the seed word position table in a 

deterministic finite automaton (DFA). The DFA has space comparable to our 

implementation but has much better cache behavior. However, the DFA concept does not 

work well for spaced seeds. It takes advantage of the fact that number of different ‘next’ 

seed words as we scan the sequence is small. For exact matches the number of possible 

next words is only four. For spaced seeds it is much higher; as we move to the next 

position, many positions that were spaces in the previous seed word are now filled with 

characters, and each of these has four possibilities. Z-steps aren’t DFA friendly, for 

similar reasons. 

Diagonal extent table. (fixed 0.75M). As part of the gap-free extension stage 

(section 2.3) we maintain an array of the extent of expansion along each diagonal. This 

                                                

12  Suffix tree space is O(n log n), so Lippert’s claim of 20 bytes per character, without mention of a specific 
sequence length, is curious. 
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allows us to quickly filter out seed hits that have been covered by the expansion of a 

previous hit. If twin hits are required, a second array gives the start position of the latest 

series of nearby hits on each diagonal. A third array is used to resolve hash collisions, as 

will be explained shortly. 

A direct implementation of this data structure (for which collision resolution 

would be unnecessary) would require 8(L1+L2) bytes, or 4Gbytes for large 

chromosomes13. Instead, we hash diagonals to 16-bit values14. This reduces memory 

requirements to 12x216 = 0.75Mbytes (after we add the third array to detect hash 

collisions). 

Experimental results regarding the rate of hash collisions and their effect on 

resulting alignments are given in section 6.1. 

 

 

 

Figure 4.1 Seed-word position table, linked list implementation. Packed seed word selects 

linked list containing positions of matches in sequence 1. 

                                                

13  If twin seeds are sacrificed, only 2G bytes would be required, still well above our target budget. 
14  The hash function simply uses the least significant bits of the diagonal. 
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Dynamic programming array and traceback memory (80M). The DP array 

memory used during gapped extension is greatly reduced, compared to a straightforward 

implementation of (1.1), by constraining to the y-drop region. Further, scores are only 

saved for the current row being processed, so the number of DP cells needed is the 

longest row slice through some y-drop region. Memory is allocated on an as-needed 

basis, in increments of about 16K. This is not a significant memory consumer because, 

for default settings, the longest row slice is typically ≈ 2,000 cells, or about 32K. 

A larger concern is traceback memory. In order to reconstruct an optimal 

alignment, we need to store traceback information over the entire y-drop region for a one-

sided gapped extension. These are stored as one byte per cell. For default settings, the 

average y-drop region is less than 1 million cells, and the largest less than 25 million. The 

user can specify the amount allocated. By default 80M bytes are allocated, which will 

cover 80 million cells. A traceback memory shortfall causes truncation of a gapped 

 

 

 

Figure 4.2 Seed-word position table, last/previous implementation. Packed seed word 

selects last position of a match in sequence 1. That position indexes position of previous 

match, additional matches are found by following the series of positions. 
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extension. This happens only when sequences are very similar, in which case it is likely 

that another anchor will allow us to pick up the rest of that alignment. 

Additionally, we maintain an array of indexes to where each row begins (in the 

traceback array). Indexes into the traceback array are used rather than pointers to save on 

64-bit machines. The index array is allocated as needed, expanding in leaps of 512K (128 

thousand rows). For default settings, fewer than 20,000 rows are usually required. 

4.3 Overweight Seeds 

Memory requirements for the seed word position table depend on two factors, the 

number of positions stored in the table and the weight of the seed pattern. An increase of 

1 in seed weight quadruples both the number of possible packed seed words and the bytes 

needed for the table indexed by them. On a machine with 1G of memory, a practical 

weight limit is 13. A weight-14 seed requires 1G just for this table, leaving no resident 

memory for anything else. Even on a machine with 8G, a weight-15 seed uses half the 

resident memory. 

As another tradeoff of memory for time, LASTZ allows the user to specify a limit 

Wmax on the portion of the seed used to index the table. Seeds heavier than that limit are 

considered overweight, and require additional processing to resolve seed hits. In effect, 

the seed packing function becomes a hash function. The 2L bits of the seed word are 

packed to 2Wmax bits instead of 2W. Matches in the seed word position table are no 

longer guaranteed to be seed hits. Each hit in the seed word position table is then resolved 

by comparing the seed word in sequence1 with that in sequence 2. To facilitate this 

comparison, we construct a packed version of sequence 1. 

4.4 Quantum Sequence Support 

As described in section 1.3, it is often desirable to deal with DNA sequences that 

contain uncertainty, which we call quantum sequences. LASTZ can align a quantum 

query sequence to a DNA sequence. Externally, the quantum sequence must be reduced 

to a finite alphabet 

! 

"Q (maximum 255 symbols) and an appropriate |

! 

"Q|x4 substitution 

scoring matrix must be provided. Techniques for performing the reduction and creating 

the scoring matrix are discussed in Appendix C. 
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 The quantum sequence and scoring matrix comprises everything LASTZ needs to 

know about the sequence. Specifically, it does not know anything about the probabilities 

represented by any symbol15. The standard alignment recurrence (1.1) is unaffected by 

the presence of quantum DNA on one side of the equation. All that is required is a 

scheme that provides scores for substitution and gaps. Further, any algorithm that 

computes alignment scores based on that recurrence will still work for quantum 

alignment. Thus LASTZ is able to use the same algorithms that it uses for gap-free 

extension, chaining, anchoring, gapped extension and interpolation when aligning DNA. 

However, the seeding technique used in DNA alignment takes advantage of the small 4-

character alphabet, creating a table indexed by 4W seed words. A table of all |

! 

"Q|W seed 

words would be prohibitive. We can still make use of a table of words from the DNA 

sequence, but we won’t have words in the quantum sequence that directly match them. 

For quantum sequences, LASTZ modifies the anchor finding stage as follows. It 

builds the usual table of seed words for (DNA) sequence 1. The (quantum) query 

sequence is parsed into overlapping q-words of length L. Each q-word is collapsed to W 

symbols (removing spaces if a spaced seed is being used). For each q-word it generates 

the ball of DNA words that score above some threshold (irrespective of whether the 

words exist in the DNA sequence). Then it looks up the locations of those words in the 

DNA sequence and proceeds as for DNA-to-DNA alignment. The ball generation 

algorithm is described in C.4. 

                                                

15  The mapping from symbol to probability can be provided, to enhance certain output formats. 
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Chapter 5 

INFERZ 

Given two long sequences of DNA, how can we assign ‘appropriate’ scores for 

matches and penalties for substitutions, gap open and gap extend? To answer this, we 

must have a model of the evolutionary process that mutated a common ancestor into the 

two sequences, and we must have a means of evaluating the inferred scores. We discuss 

the model in the rest of this chapter and from it derive a method for inferring scores. This 

method is encapsulated in the INFERZ program. 

For evaluation, we treat the aligner as a classifier, classifying aligned bases, and 

use statistics based on the receiver operating characteristic (ROC, section B.5). ROC in 

turn requires values for true (TP) and false positive (FP) rates. For alignments of real data 

the correct alignment is rarely (if ever) known, so exact TP and FP rates aren’t known. 

We addressed this is two ways. First, we test our inference method on simulated data for 

which the correct alignments are known. Second, for real data we use an estimate of FP 

derived from the alignments themselves, discussed in section 5.6. 

5.1 Finite State Automaton for Neutral DNA 

As per Durbin et al. (1998) we model a homologous sequence pair of neutral 

DNA by a three state Finite State Automaton (FSA) shown in figure 5.1(a). The FSA 

emits homologous pairs of bases in state H, and gaps in states IX and IY. It is equivalent to 

an evolutionary model in which a common ancestral sequence evolved into a pair of 

sequences by means of independent mutations. Substitutions occur according to 

! 

pxy . 

Insertions occur with the same probability 

! 

popen  at any position in either sequence, and do 

not overlap. The insertion process can stop independently at each base, continuing with 

probability 

! 

p
extend

, resulting in a geometric distribution of lengths. Deletions are treated as 

insertions in the other sequence. We address the validity of this model in section 5.3. 
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The model relates directly to the affine-gap alignment algorithm. Given 

observations from alignments we can infer alignment scores under this model. Inferring 

directly from the model, we can use log-odds16 scores from each observed probability. 

We first consider the score of a length n gap and ignore base content, reducing the FSA to 

the gap-only model in figure 5.1(b). Since the model requires every gap to be followed by 

at least one step in H, we also include that step. The score for this elongated gap, 

consisting of n steps in I and one in H, should be 

 
(5.1) 

 

while the score for any other H event should be 

 (5.2) 
 

For scores suitable for recurrence (1.1) we must have 

 (5.3) 
 

From this we see that recurrence (1.1) charges a penalty for one extra extend, and scores 

the gap-terminating event the same as any other H-event. Making appropriate 

adjustments to 

! 

sopen , the proper inferred scores are 

 

  
 (a) (b) 

Figure 5.1 Pair finite state automaton. (a) Full model emitting pairs. (b) Simplified gap-

only model. 

                                                

16 When we give specific log values we use base 2 logarithms. 
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(5.4) 

 

Incorporating base content, we include log odds scores for the pair emitted in the H 

event. Using the approach of Chiaromonte et al. (2002), we have 

 

(5.5) 

 

Note that the formula for 

! 

sxy  in (5.5) differs from the formula in Chiaromonte et 

al. by the addition of a score for remaining in state H. Since Chiaromonte et al. did not 

consider gaps, 

! 

popen = 0  in their model, 

! 

log(1" 2popen ) = 0, and (5.5) is consistent with 

their result. 

We could also incorporate base content in gap scoring. However, there is no 

accommodation for doing so in recurrence (1.1). Effectively we are modeling base 

distribution in gaps as uniform. 

5.2 Inferring Scores From Alignments 

Given a collection of alignments , we can estimate event probabilities and apply 

(5.5) to infer alignment scores. Defining these alignment statistics 

# = number of alignments. 

H = number of ungapped columns (number of steps in FSA state H). 

I = number of gapped columns (number of steps in FSA state IX or IY). 

gaps = number of gaps. 

xy = number of ungapped columns with x for sequence 1 and y for sequence 2. 

x• = number of ungapped columns with x for sequence 1. 

•y = number of ungapped columns with y for sequence 2. 
 

We can estimate the necessary quantities for (5.5) thus: 
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(5.6) 

 

 

(5.7) 

 

 

(5.8) 

5.3 Empirical Agreement with the FSA Model 

Under the simplified gap-only FSA, the distribution of gap lengths should be 

geometric. This is a shortcoming of the model, as there is much empirical evidence that 

suggests gap lengths in vivo follow a power law distribution (Zhang and Gerstein, 2003). 

Genome-wide observations of in silico alignments between human and six vertebrates 

(section B.1) show gap length distributions somewhere between power-law and 

geometric, as is apparent in figures 5.2(a) and (b). The underlying alignment algorithm 

used affine-gap scoring, and it appears it has pushed the observed distribution toward 

geometric. 

Though this is a serious deficiency, affine-gap scoring is much faster to compute 

than more general schemes, and this is especially important for large-scale alignments. 

The deficiency says nothing about the algorithm’s ability to locate homology on a broad 

scale, only that its ability to accurately place gaps is questionable. The program could be 
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augmented by post-processing the discovered alignments using a more realistic gap 

model (Cartwright, 2006). 

The model also predicts that ungapped run lengths (inter-gap distances) should be 

geometric. Figure 5.3 shows two disagreements with observed run lengths in silico. First, 

there is an abrupt drop-off in the number of very short runs (in dog, this occurs for runs 

shorter than 10 bp, for macaque 30 bp). This is an alignment artifact; recurrence (1.1) 

discourages nearby gaps and will find a higher scoring alternative. Second, macaque has 

a greater number of short runs (other than very short), suggesting the true distribution is 

closer to a power-law. 

The scarcity of very short runs demonstrates a failing of the premise of basing 

alignment on maximum parsimony, finding an optimum under some model. Parsimony is 

imperfect. With a large enough sample, the actual evolutionary history will contain 

 

  
 (a) (b) 

Figure 5.2 Gap Lengths Distribution. Gap lengths in medium G+C content regions of 

human aligned to dog. (a) Comparison to geometric distribution (dashed red line) shows 

the presence of more short gaps than would be expected. (b) Comparison to power law 

distribution (dashed red line) shows the presence of fewer short gaps and long gaps than 

would be expected. 
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events that are not the most probable. Holmes and Durbin (1998) and Lunter et al. (2007) 

have done seminal work measuring the expected incorrectness of maximum parsimony 

aligners, but this line of research is still limited. 

5.4 Inferring Scores from Sequences 

Given two sequences (as opposed to alignment examples), how should we apply 

(5.5) to infer scores? The solution in Chiaromonte et al. (2002) is to align using 

! 

±1 

substitution scores and infer from the resulting alignments. Gaps were not addressed, so 

alignment was halted after gap-free extension. Inferring scores from alignments created 

by a recurrence (1.1) aligner raises questions of circularity. The process can be viewed as 

a function that maps one set of starting scores (chosen to create the alignments) to 

 

 

  
 (a) (b) 

Figure 5.3 Ungapped Run Lengths Distribution. Lengths of ungapped runs in medium 

G+C content regions of human aligned to (a) dog and (b) macaque, compared to 

geometric distribution (dashed red lines). Both distributions show a abrupt drop-off of 

very short runs. Disregarding short runs, the distribution for dog is a close fit to a 

geometric, while for macaque there are still more short runs than would be expected. 
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another (inferred from the alignments), with the sequences as a fixed control variable. To 

what extent are the inferred scores affected by the choice of starting scores? 

Chiaromonte et al. (2002) suggested that inferred scores might be improved by 

iterating the process, but left this as an open question. In fact the idea raises several 

questions. It is not immediately clear whether the iterated process will converge. If it 

does, will it converge to the same answer independent of the starting scores? Will the 

converged scores be the ‘correct’ scores (according to some model), and do the correct 

scores provide the best alignment results? 

We tested iteration on simulated DNA data and on real data. Simulated data was 

generated according to the pair FSA model, and for a variation on that model that 

includes power law gap distributions (see section 5.3). For real data we used data from 

the ENCODE project. 

We included gap score inference but chose a two-phase approach. We first 

iterated substitution scores inference until convergence, then used those substitution 

scores while iterating gap scores inference. The process is shown in figure 5.4. In order to 

avoid round off effects, we used floating-point scoring. 

 

 

 

1 Start with substitution scores of 

! 

±1 

2 Find high scoring gap-free alignments, low identity  

3 Infer substitution scores 

4 Repeat (2 and 3) to convergence, orbit or divergence 

5 Assume initial open and extend scores based on max substitution 

score 

6 Find gapped alignments 

7 Infer gap scores 

8 Repeat (6 and 7) to convergence, orbit or divergence 

Figure 5.4 Iterated Scoring Inference. Substitution scores are iterated from a starting 

point of 

! 

±1 match/mismatch to convergence. Initial gap scores are assigned relative to 

smax, and iterated to convergence. 
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5.5 Experimental Results on Simulated Genomic Sequences 

We applied the iterated inference procedure of section 5.4 to 135 simulated 

sequence pairs (section B.2). Of interest was whether the process would converge and if 

so whether the resulting scores matched the model scores. 

Figure 5.5 shows typical gap score convergence for one of the simulated pairs. 

Twelve starting points were tried. Using the converged substitution scores, iteration for 

gaps scores was started at one of the 12 starting points and run to convergence. In all 

twelve cases convergence (to within 4 digits) occurred within 6 iterations, and all 

converged to the same point (to 6 digits). However, the convergence results did not match 

the model scores. sextend was essentially correct, but sopen was about 20% too large. 

These results are typical for the 54 sequence pairs with gaps generated per the pair 

FSA model. All but one of the pairs converged to a single attractor and did so in less than 

10 iterations. One pair had two attractors, with nearly the same sopen but sextend values 

differing by 7%. For all pairs (including the double attractor), the attractor’s sopen is larger 

than the model, the error was as much as 30% but was usually within 10%. For all but 

two, sextend was smaller than the model, off by as much as 10%; for most it was within 

5%. Of the other two, one overestimated sextend by 1%; the other was the double attractor 

case, in which both attractors overestimated sextend by 10-20%. The double attractor case 

had model parameters pG+C=31%, Pmatch=.65, Popen=.024 and Pextend=.81, all of which are 

extremes over the parameter space. Results are similar for the 81 power-law gap 

sequence pairs. Convergence results17 for sopen are also too large but as a rule are much 

closer to the model, all cases being within 7%. Of the 81 sequence pairs, two lead to 

multiple attractors.  

To evaluate whether the inference process improves scores—improves the 

alignments produced with those scores—we evaluated the alignments using each score 

set along the iteration path. Iteration was performed according to the process in figure 5.4 

with only one starting point for gap scores. For comparison, the default BLASTZ score 

set was also tested. Since the true alignments for these sequence pairs are known, true 
                                                

17  While sextend participated in convergence, we cannot interpret the accuracy of sextend; there is no model 
value to compare to. 
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(TP) and false positives (FP) can computed, allowing us to evaluate by ROC, both 

visually and numerically. 

Figure 5.6 shows the performance of each score set for the same sequence pair 

used in the convergence discussion. Iteration produced 15 score sets. The best set was 

gaps0, which combines the converged substitution scores with default gap scores 

(sopen=-3.5smax and sextend=-0.20smax). Several score sets had a higher ratio of TP to FP for 

high scoring alignments, but found less total TP. For example, gaps2, gaps3, and gaps4 

have fewer FP than gaps0 up about 45,000 TP but don’t find much more TP than that. 

Gaps1 exhibits the same effect, but with a smaller FP advantage and a higher TP limit. 

For this sequence pair, each iteration of gap scores made things worse. Iteration of 

substitution scores seems to have made little difference. Other than subs0, which is a 

simple 

! 

±1 match/mismatch set, the substitution sets are so close that many of them are 

obscured in this plot. It is interesting to note that the BLASTZ default scoring set finds 

more TP than any of the other sets tested, 1.3% more than gaps0 (65,908 bp vs. 65,052). 

However, it also has a lower TP/FP ratio. Also worth noting is the relatively low TP for 

all score sets. The best set only found 82% of the homology. This sequence pair has the 

lowest identity and highest gap rates of the simulated sets. 

Disappointingly, these results are not typical of all the simulated sequence pairs. 

We have noticed no trend as to which of the score sets produced by iteration is the best. 

5.6 Experimental Results on Actual Genomic Sequences 

We applied the iterated inference procedure to 35 modified ENCODE sequence 

pairs, with coding and repeat regions removed from human and repeats unmasked for the 

other species (section B.3). For these sequences we do not know the correct answers and 

have to use a different means to evaluate the quality of results. For this purpose, we 

estimate the false positive rate by aligning one sequence to the other sequence, 

backwards. The backwards sequence has no known biological meaning, as it is reversed 

but not complemented. As such, it is much like a random sequence with the same base 

composition as the original, but it also maintains some local base variations from the 
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Figure 5.5 Scores inference convergence on simulated sequence pair. Open circles 

indicate twelve different starting points for gap scores; lines and solid circles show the 

progression of iterated scores. Each path converges to sopen=-12.5 sextend=-0.45 (O=700 

E=25 if scaled so that smax=100). Target shows score expected from model, to sopen=-10.6 

sextend=-0.44. 
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Figure 5.6 Scores inference performance on simulated sequence pair. Dashed lines are 

ROC plots of iterated score sets. Solid line is for best score set. Legend shows score sets 

ranked by ROC20000. Names indicate position in iteration sequence (subs 0 is initial 

substitution score set, subs 1 is after one iteration, etc.). Value shown is ratio of the score 

set’s ROC20000 to that of the best. Score sets were scaled so that smax=100 and rounded to 

nearest integers. For each curve, the highest scoring alignments occur in the lower left, 

and score decreases along the curve. The actual alignment contains 80,000 homologous 

base pairs. 
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original that a simple random sequence would not18. Using this estimate of FP, we can 

evaluate alignments visually by comparing total aligned bases to FP. This is similar to 

ROC, with the major difference that aligned bases equals TP+FP. This evaluation 

technique has shortcomings, which we will address shortly. 

As in section 5.5, we evaluate the score sets along the inference iteration path. 

Figure 5.7 shows the performance of each score set for region ENm001, human vs. 

mouse. The gaps0 set stands out as the best, aligning significantly more bases for any 

value of FP. For example, at FP=0 it identifies 12% more homology than the next best 

score set (730K bp vs. 660K). 

While 5.7 shows very nice results with a clear winner, using alignments to 

backwards sequence as an estimate of FP leads to a logical inconsistency which we are 

not able to explain. If the estimate were exactly the FP rate, then we could compute TP 

by subtracting FP from the total bases aligned. This would enable us to plot a true ROC 

plot; such a plot is shown in figure 5.8. Unfortunately, this leads us to the nonsensical 

conclusion that the total number of TP can decrease as we discover more FP. This is 

evident from the negative slope of the top of every curve19.  

 The crux of the inconsistency is demonstrated in figure 5.9. No FP bases are 

found above a certain score. As the score decreases, the FP rate increases, but initially is 

increasing slower than the total bases aligned. Eventually the FP rate exceeds the total 

rate, and the number of TP decreases. We are hard-pressed to explain this paradox; 

possibly it is an artifact of random FP having quadratic growth20 (relative to sequence 

length) while TP is essentially linear. We briefly investigated using alignments on 

random sequences for an FP estimate but it appeared the paradox still existed. Figure 5.10 

illustrates why—the scoring distributions for both FP estimates have similar shapes. The 

                                                

18  For example, promoter regions usually contain an elevated rate of G+C compared to the rest of a 
genome. 

19  This is true even for gaps0, but it is less noticeable. 
20 Since our unit of comparison is an alignment column, rather than an aligned base, the expected number 

of FP contributed by a particular base in sequence 1 grows with the length of sequence 2.  This is in 
contrast to the expected number of TP contributed, which, in the absence of repeats in sequence 1 in this 
test, is constant. 
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only apparent difference is that alignments of the random sequences tended to score 

higher. 

 

  

 

 
Figure 5.7 Scores inference performance on real sequence pair. Vertical axis is all bases 

aligned for ENm001 human vs. mouse with K=0. Horizontal axis is false positive rate 

estimated as bases aligned to backward mouse sequence. Solid line is for best score set. 

Legend shows score sets and ROC ratios as in figure 5.6. 
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Figure 5.8 Scores inference performance adjusted for true positive rate. The same data is 

shown as in figure 5.7, but the vertical axis has been replaced by an estimate of the true 

positive rate (true positive = bases aligned – false positive). All curves contain a portion 

with negative slope, indicating a logical inconsistency. 
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Figure 5.9 Estimating false positive rate by alignment to backward sequence. Bases 

aligned for ENm001 human vs. mouse with K=0 using the best score set found (gaps0). 

(Solid black) count of all aligned bases. (Red) bases aligned to backward mouse 

sequence. (Dashed) true positives, estimated by subtracting backward count from total 

count. (Blue) total true positives estimated. Logical inconsistency is revealed where 

estimated true positive curve is above total true positives estimate. 
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 (a) (b) 

Figure 5.10 False positive scoring distributions. Distribution of scores for two estimates 

of false positive alignments using the gaps0 score set. (a) Estimated by alignment of 

random sequences, with K=1500. (b) Estimated by alignment of ENm001 human vs. 

backward mouse sequence with K=0. Shape of distribution to the right of the red line is 

similar to shape for random sequences. 
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Chapter 6 

LASTZ Experimental Results 

6.1 Hashed Diagonal Extent Table 

To filter out redundant gap-free extension of seed hits we keep track of the extent 

of expansion along each diagonal. To reduce memory requirements for large sequences, 

we track only by a 16-bit hash value of the diagonal. Hash collisions will cause us to 

reject some seed hits and cause us to miss some homology. 

To evaluate the effect of hash collisions, we ran alignments on 35 pairs of 

ENCODE sequences using LASTZ with default settings and a special version of LASTZ 

without diagonal hashing. The number of hash failures was counted, and the difference 

between the resulting alignments was measured (dividing alignment columns into true 

and false positives and false negatives, as described in section B.5). 

It should be noted that not all collisions are hash failures. A collision occurs 

whenever the current seed hit’s diagonal differs from the most recent diagonal with the 

same hash value. A failure occurs only when the extent stored for the diagonal’s hash 

equivalent is beyond the seed hit. In other words, when some other diagonal with the 

same hash value contains an HSP that extends beyond the current seed hit, we have a 

failure. This is rare; the majority of collisions are not failures, 

Table 6.1 shows the results. The failure rate is small but increases with sequence 

length. Though the rate is small, due to the large number of seed hits the number of 

failures is seemingly large, in some cases more than ten thousand. Regardless, there is no 

disagreement in the resulting alignments. In spite of the failures, there are still enough 

seed hits to identify the same alignments. 

6.2 Z-step 

The amount of memory used for seeding can be reduced by the use of sparse 

spacing. Seed words are only stored for positions that are multiples of the z-step. In 
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Table 6.1 Hash failures in the diagonal extent table. 

region human 
bp species bp seed 

hits 
hash 

failures 
failure 

rate 
alignment 
coverage 

baboon 1.95M 5.10M 10,309 0.20% 1,019,525 
mouse 1.49M 3.28M 6,762 0.21% 529,724 

dog 1.51M 3.15M 7,069 0.22% 721,254 
opossum 1.83M 3.90M 7,042 0.18% 78,682 

ENm001 1.11M 

chicken 744K 1.48M 2,511 0.17% 14,303 
baboon 1.16M 2.47M 3,367 0.14% 645,347 
mouse 1.25M 2.03M 2,803 0.14% 405,847 

dog 919K 1.63M 2,283 0.14% 564,253 
opossum 1.26M 2.18M 2,608 0.12% 190,504 

ENm012 647K 

chicken 528K 849K 1,073 0.13% 89,438 
baboon 1.36M 2.26M 2,385 0.11% 620,571 
mouse 1.16M 1.61M 1,698 0.11% 394,012 

dog 990K 1.56M 1,859 0.12% 551,268 
opossum 1.43M 2,14M 2,053 0.10% 78,422 

ENm014 646K 

chicken 513K 670K 864 0.13% 9,510 
baboon 584K 637K 281 0.04% 258,549 
mouse 595K 374K 190 0.05% 73,265 

dog 427K 339K 233 0.07% 203,912 
opossum 506K 378K 157 0.04% 11,800 

ENr114 266K 

chicken 182K 95K 37 0.04% 1,529 
baboon 498K 373K 66 0.02% 269,169 
mouse 424K 174 31 0.02% 38,203 

dog 318K 154K 32 0.02% 90,074 
opossum 991K 373K 65 0.02% 7,610 

ENr132 318K 

chicken 328K 120K 21 0.02% 2,237 
baboon 819K 609K 156 0.03% 285,148 
mouse 568K 277K 74 0.03% 140,615 

dog 498K 329K 148 0.05% 238,898 
opossum 591K 327K 97 0.03% 33,227 

ENr221 289K 

chicken 251K 119K 58 0.05% 8,672 
baboon 1.02M 650K 120 0.02% 227,477 
mouse 516K 232 73 0.03% 86,066 

dog 437K 259K 83 0.03% 184,341 
opossum 611K 312K 80 0.03% 48,763 

ENr323 236K 

chicken 136K 56K 9 0.02% 10,607 
 

 

addition to memory savings, z-step can speed up the seeding stage by reducing the 

number of seed hits and the number of gap-free extensions performed21. Subsequent 

stages are also sped up due to a reduction in the number of anchors. Z-step can 

                                                

21  The reduction in HSPs is not linear, though.  Since most HSPs contain more than one seed hit, an HSP 
will only be completely missed if all of its seed hits are at non-multiples of z. 
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potentially cause loss of sensitivity in the resulting alignments, in return for a gain in 

speed. 

To compare the speed gain to sensitivity loss, we ran alignments on 35 pairs of 

ENCODE sequences using z-step values of 2, 5, 10, 20, 50 and 100, with default settings 

otherwise. For timing comparisons we aligned without a z-step. For alignment 

differences we compared to a BLASTZ alignment. Figure 6.1 shows results for two of 

seven regions. In 6.1(a) it is apparent for ENm014 that the time saved by using a z-step 

always exceeds the loss in sensitivity, even for large z-steps. The miss rate is remarkably 

low for baboon; for Z=100 the miss rate was slightly less than 1%, suggesting that long z-

steps are a viable strategy for closely related sequences. Five of the seven regions had 

loss of around 1% at Z=100, while the other two had loss of 1.6% and 2.5%. 

The results for ENm014 are typical of the other regions, but there are exceptions. 

6.1(b) shows some odd results for ENr114. For chicken Z=20 performs worse than Z=50, 

and the miss rate actually exceeds time savings at Z=100. Inspection of table 6.1 reveals 

that chicken ENr114 has a low number of seed hits compared to other species and 

regions. The only alignment with fewer seeds hits, chicken ENr323 (not shown), exhibits 

a similar anomaly, with runtime for Z=20 exceeding that for Z=10, even though there is 

negligible loss in sensitivity for either. 

It should be noted that the sensitivity losses for large Z, while lower than the time 

savings, are still unreasonably large for most applications. They are of interest here as a 

means of reducing the alignment time during inference. 

6.3 Twin Hit Seeds 

LASTZ supports twin hit seeds, in which two nearby hits on the same diagonal 

are required before gap-free extension is performed. Figure 6.2 shows an example of how 

they can increase specificity. Comparing 500K bp regions of human and mouse with 

K=1500. Without requiring twin hits, as in 6.2(a) and (b), we get a lot of alignment 

‘noise’. In 6.2(c) and (d) twin hits were required, overlapping by as much as 10 bp or 

separated by up to 10 bp. The twin hit seed removes nearly all the noise in the HSP stage. 

Gapped alignment speed is greatly affected by the number of HSPs. The noisy alignment 

in 6.2(b) took 40.4 seconds, the cleaner alignment in hits 6.2(d) took only 7.6 seconds. 
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(a) 

 

(b) 

 

Figure 6.1 Z-step experimental results. (a) ENCODE region ENm014 exhibits regular 

behavior. (b) ENCODE region ENr114 shows strange behavior. 
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 (a) (b) 

  
 (c) (d) 

Figure 6.2 Twin hit seed. Dot plots for alignments of ENCODE region ENr233 human 

(horizontal axis, 500K bp) to mouse (vertical axis, 466K bp). (a) HSPs for single hit seed. 

(b) Gapped alignments from single seed hits. (c) HSPs for twin hit seed. (d) Gapped 

alignments from twin seed hits. The same spaced seed was used for all cases. All four 

plots have undergone identical contrast adjustment to emphasize the presence of extra 

alignments in (a) and (b). 
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Table 6.2 Statistics for single hits vs. twin hits. 
 single hits twin hits 
gap-free extensions 220,402 1,025 
bp extended (gap-free) 13,087,680 147,060 
bp per gap-free extension 59 143 
HSPs 3,069 885 
anchors extended 1,814 175 
gapped extensions 3,628 350 
DP cells visited 1,670,368,460 295,283,732 
fraction of DP matrix visited 1/140th 1/789th 
DP cells per gapped extension 460,410 843,668 
run time (seconds) 40.4 7.6 
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Chapter 7 

Conclusions and Future Work 

We have set in place a platform for automated alignment parameterization, 

LASTZ, and used that platform to create and evaluate a program, INFERZ, to infer 

scoring sets based on a well-understood mathematical model. We have found that multi-

step inference of scores converges to an approximation of the correct scores but tends to 

overestimate the gap open penalty and underestimate the gap extend penalty. Further, we 

have found that this method is unpredictable as a means of finding an optimal score set. 

The convergence point is no more likely to be the best score set than any other set along 

the convergence path. 

We view this work as a starting point toward the goal of completely automating 

alignment parameterization. In addition to inferring score sets, we will also need to 

automatically choose seeding strategies and thresholds. Ideally the user should only have 

to choose one parameter, ranging from zero (fast run time, lower sensitivity) to one (high 

sensitivity, slower run time). 

The improvements in LASTZ, in comparison to BLASTZ, represent the next step 

in the evolution of BLASTZ. The primary guiding factor was to give INFERZ more 

optimization choices, most of which have yet to be explored. 

We found that what appeared to be a reasonable scheme for automatically 

evaluating score sets—using alignment to backwards sequences—suffers from a logical 

inconsistency. Though this is a disappointing result, it does not render the scheme 

entirely useless. There remains a score region outside of the inconsistency, specifically 

for alignments scoring high enough that the false positive estimate is low, and we can 

make use of this to compare alignment results and score sets. 

Being able to quickly evaluate score sets is important in light of the inconsistency 

of iterated inference. The promise of iterated inference was that it would converge to an 

optimal or near optimal score set, eliminating the need for evaluation feedback. As this is 

not true, other optimization techniques should be explored. Convergence plots suggest 
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the score space terrain is smooth enough that hill climbing techniques would work. This 

requires quick evaluation of many scores sets. This might be accomplished by aligning a 

coarse subsample of the sequences with a very large z-step, but the effect of doing so has 

not been explored. 

The additional versatility of LASTZ allowed us to test several new seeding 

strategies, but there are still more strategies that could be tried, for example the multiple 

seeds of Buhler et al. (2003) and Li and Ma (2003). Half-weight seeds have only been 

evaluated empirically, by Hou et al. (2007), and deserve a mathematical analysis, such as 

was done for (full weight) spaced seeds in Buhler et al. (2003), to determine their 

expected effect on sensitivity. The current implementation of LASTZ is slower than 

BLASTZ during seed hit processing. There is no intrinsic reason why this should be the 

case. This aspect of the program has received little attention to date, and the author 

believes this can be brought into line with the speed of BLASTZ when they are 

performing identical alignments. In addition, speed gains may be accomplished by using 

more than two stages of interpolation.  

Because affine gap scoring is in conflict with empirical evidence of gap length 

distributions, LASTZ could be improved by incorporating a slower but more biologically 

realistic gap scoring model as a post processing step. Cartwright (2006) has shown the 

viability of post processing to improve alignment quality, but incorporating feedback 

from the post processed alignments could improve the scores used during the main 

alignment phase. Even if we achieve the optimal score set for affine gap alignment by 

itself, we may need a suboptimal score set to achieve the best alignments after post 

processing. 

The quantum alignment capability incorporated in LASTZ also deserves further 

exploration. With appropriate scoring matrices and short queries (<20 bp), gap-free 

quantum-to-DNA alignment is equivalent to a position-weight-matrix motif finder. The 

ability to allow gaps and efficiently handle longer queries could be useful for long-motif 

applications, such as repeat finding. Adding support for quantum-to-quantum alignment 

would allow it to be used as the basis for a progressive multiple aligner, maintaining 

probabilistic base information for every internal ancestor. 
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Appendix A 

Glossary 

HSP High-scoring Segment Pair. An alignment between two sequences, 

containing no gaps. 

pmatch Probability that an alignment column contains identical nucleotides. 

pxition Probability that an alignment column contains a transition; either both are 

purines (A or G) or both are pyrimidines (T or C) 

pxversion Probability that an alignment column contains a transversion (one purine and 

one pyrimidine) 

pxy Probability of an alignment column with x for sequence 1 and y for sequence 

2. 

px• Probability of an alignment column with x for sequence 1. 

p•y Probability of an alignment column with y for sequence 2. 

pG+C Probability of a G or C. 

qA,qC,qG,qT For quantum base q, the probability that q=A (or C, G or T). 

sxy Log-odds score for an alignment column with x for sequence 1 and y for 

sequence 2. 

sopen Log-odds score for opening a gap. 

sextend Log-odds score for extending a gap. 

smax Maximum log-odds score for a score set. 

! 

˜ x  Nucleotide complement. 

! 

˜ A = T,

! 

˜ C = G,

! 

˜ G = C and

! 

˜ T = A. 

|X| Length of (number of bases in) sequence X. 

X[i..j] Subsequence of X consisting of bases i through j, inclusive. 

x-drop Limit on negative scoring segments allowed in an gap-free extension. 

y-drop Limit on negative scoring sub-alignments allowed in an gapped extension. 

z-step Seed word position granularity. With a z-step of 5 only every 5th position in 

sequence 1 is used. 
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Appendix B 

Methods 

B.1 Analysis of 28-Vertebrate Alignments 

In order to have typical genome-wide parameters for simulation data, we 

measured statistics over pairwise alignments of human to six vertebrates—macaque, 

mouse, dog, opossum, platypus and chicken (assemblies hg18, rheMac2, mm8, canFam2, 

monDom4, ornAna1 and galGal3). We projected pairwise alignments from whole 

genome alignments of 28 species (Miller et al., 2007) downloaded from the UCSC 

Genome Browser (http://genome.ucsc.edu). Alignment blocks were partitioned into three 

sets by human G+C content, divided into low (less than 37.5%), medium (37.5% to 

45.5%) and high (more than 45.5%). 

Table B.1 shows estimated genome-wide probabilities of nucleotide match, 

transition, transversion, gap open and gap extend. These provide guidance for parameter 

choices of the simulated data sets of section B.2. 

 Table B.2 shows alignment scores inferred from observed probability estimates 

as per (5.5). These provide a base point for comparing gap scores to those used in 

BLASTZ. Typically BLASTZ scores are scaled so that the maximum substitution score 

(smax here) is 100. Thus the ratios sopen/smax and sextend/smax correspond to BLASTZ’s O 

and E parameters, divided by -100. BLASTZ’s defaults are O=400 and E=30. The table 

shows open scores that would range from 347 to 569 and extend scores from 15 to 23. 

This suggests that BLASTZ slightly under penalizes gap open and over penalizes gap 

extend. 

B.2 Simulated Sequence Pairs 

We generated 135 simulated neutrally evolved sequence pairs covering the ranges 

of statistics observed in the 28-vertebrate alignments (section B.1). Substitution rates 

were modeled with the T92 evolution model (Tamura, 1992). T92 is a three-parameter 
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Table B.1 Genome-wide alignment probabilities observed in six vertebrates. 

human 
GC species GC 

! 

p
match

 

! 

p
xition

 

! 

p
xversion

 

! 

p
xition

p
xversion

 

! 

popen  

! 

p
extend

 

! 

pmismatch

popen

 

low macaque 31% 0.942 0.037 0.021 1.81 0.008 0.775 7.2 
low mouse 31% 0.673 0.185 0.142 1.30 0.023 0.791 14.0 
low dog 31% 0.758 0.146 0.096 1.52 0.019 0.766 12.8 
low opossum 31% 0.635 0.187 0.178 1.05 0.023 0.787 16.2 
low platypus 31% 0.640 0.188 0.172 1.09 0.021 0.778 16.8 
low chicken 31% 0.641 0.182 0.177 1.03 0.023 0.786 15.5 

medium macaque 41% 0.938 0.041 0.020 2.05 0.006 0.789 10.0 
medium mouse 41% 0.665 0.195 0.139 1.40 0.022 0.797 15.5 
medium dog 41% 0.744 0.159 0.097 1.63 0.017 0.768 15.0 
medium opossum 41% 0.654 0.189 0.157 1.20 0.019 0.787 18.4 
medium platypus 41% 0.658 0.186 0.155 1.20 0.017 0.781 19.7 
medium chicken 41% 0.681 0.172 0.147 1.17 0.016 0.780 19.7 

high macaque 53% 0.928 0.050 0.022 2.32 0.007 0.812 10.3 
high mouse 54% 0.664 0.196 0.141 1.39 0.023 0.812 14.4 
high dog 53% 0.717 0.170 0.113 1.51 0.020 0.793 14.0 
high opossum 56% 0.643 0.193 0.164 1.17 0.020 0.813 17.7 
high platypus 58% 0.624 0.192 0.184 1.04 0.021 0.813 18.2 
high chicken 57% 0.659 0.173 0.169 1.03 0.018 0.809 19.5 

 

 

Table B.2 Alignment scores derived from observations in six vertebrates. 

human 
GC 

species 

! 

s
AA

 

! 

s
CC

 

! 

s
max

 

! 

sopen
 

! 

s
extend

 

! 

sopen

smax

 

! 

s
extend

s
max

 average 
non-gap 

average 
gap 

low macaque 1.46 2.51 2.51 -8.72 -0.37 -3.47 -0.15 62.2 bp 4.4 bp 
low mouse 1.06 1.67 1.67 -7.27 -0.34 -4.35 -0.20 21.4 4.8 
low dog 1.19 1.97 1.97 -7.38 -0.38 -3.75 -0.20 26.4 4.3 
low opossum 0.96 1.60 1.60 -7.29 -0.35 -4.55 -0.22 22.2 4.7 
low platypus 1.01 1.58 1.58 -7.29 -0.36 -4.61 -0.23 23.3 4.5 
low chicken 0.99 1.61 1.61 -7.25 -0.35 -4.51 -0.22 21.7 4.7 

medium macaque 1.67 2.15 2.15 -9.23 -0.34 -4.30 -0.16 81.5 4.7 
medium mouse 1.21 1.49 1.49 -7.45 -0.33 -4.99 -0.22 23.2 4.9 
medium dog 1.36 1.70 1.70 -7.55 -0.38 -4.45 -0.22 29.4 4.3 
medium opossum 1.15 1.52 1.52 -7.57 -0.35 -4.96 -0.23 26.7 4.7 
medium platypus 1.21 1.49 1.49 -7.64 -0.36 -5.13 -0.24 28.8 4.6 
medium chicken 1.23 1.58 1.58 -7.72 -0.36 -4.90 -0.23 30.9 4.5 

high macaque 1.95 1.80 1.95 -9.26 -0.30 -4.75 -0.15 71.8 5.3 
high mouse 1.38 1.29 1.38 -7.45 -0.30 -5.39 -0.22 21.3 5.3 
high dog 1.54 1.38 1.54 -7.51 -0.33 -4.88 -0.22 24.7 4.8 
high opossum 1.35 1.26 1.35 -7.69 -0.30 -5.69 -0.22 24.7 5.3 
high platypus 1.41 1.11 1.41 -7.66 -0.30 -5.43 -0.21 24.3 5.4 
high chicken 1.47 1.23 1.47 -7.86 -0.31 -5.36 -0.21 28.5 5.2 
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model, fixing the G+C content distribution (

! 

"G = "C = p ,

! 

" A = "T =1# p) and the 

instantaneous ratio of transitions to transversions (

! 

"=transition rate / transversion rate). 

(B.1) shows the instantaneous rate matrix given p and 

! 

" . The third parameter is time t 

(equivalently, branch length), with the transition matrix 

! 

T = exp(Qt). While this is the 

underlying model, we chose a different parameterization based on p, pmatch and observed 

ptransition / ptransversion ratio. 

 

(B.1) 

 

We allowed nine different sets of substitution parameters. G+C content was 31, 

41 or 55% and pmatch was 65, 80, and 95%. ptransition / ptransversion ratio was fixed at 1.5. For 

each of the nine sets we chose an appropriate rate and rate matrix of form (B.1) to 

produce a substitution matrix with the desired expected observed statistics.  

We generated two collections of sequence pairs for each substitution set. One set 

uses the pair FSA model of section 5.1. The other generates gaps with a power law 

distribution. For the FSA model we allowed popen to be 0.008, 0.016 and 0.024, and 

allowed pextend to be 0.77 or 0.81. For power law gaps, we used the same values for popen 

and allowed the power law exponent to be 1.5, 1.6 or 1.7. These latter values match the 

range observed in the 28-vertebrate alignment, but which are not shown in section B.1. 

Thus we have 54 sets for the pair FSA model, and 81 for the power law gaps model. 

For each set, we generated 100 pairs, each with 800 homologous bp sandwiched 

between two independent 100 bp segments. The pairs were then concatenated into two 

sequences with 200 Ns acting as separators. 

B.3 ENCODE Data 

We constructed 35 test data sets from real genomic data, extracting data from 

seven encode regions (ENm001, ENm012, ENm014, ENr114, ENr132, ENr221 and 

ENr323) for five species (baboon, mouse, dog, opossum and chicken). The specific 

regions were chosen for the property that they are free of rearrangements when aligned 

with human for all five species. Following the methods of Chiaromonte et al. (2002), 
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coding and repeat regions, as identified by RefSeq (Pruitt and Maglott 2001) annotations, 

were stripped from the human sequences. Repeat regions in the other five species were 

unmasked (made indistinguishable from other bases). Species aligning to human negative 

strand were reverse-complemented. 

B.4 Syntenic Chromosomal Data 

To facilitate testing on chromosome-to-chromosome alignments, we constructed a 

data set consisting of one 247Mbase sequence (human chromosome 1) and one 

200Mbase sequence. The latter was constructed from six segments of mouse 

chromosomes 1, 3, and 4 that aligned well to human chromosome 1. The result simulates 

a pair of chromosome-length sequences with a common ancestral sequence, without 

rearrangements, at human-mouse evolutionary distance. Repeat masking information was 

retained. 

B.5 Receiver Operating Characteristic 

To measure the accuracy of a discovered alignment when the correct answer 

(reference alignment) is known, we use the Receiver Operating Characteristic (ROC). We 

follow Gribskov and Robinson (1996), in brief, plotting true positives against false 

positives and measuring the area under the curve. ROC gives a score between 0 and 1, 

with higher values indicating higher accuracy. 

To compute the ROC score, we perform alignment with the alignment score 

threshold set low enough to assure we will discover enough false alignments—aligned 

segments that are not in the reference. We then compare discovered alignments to the 

reference and treat the aligner as a classifier with an adjustable score threshold. All 

ungapped columns in an alignment are assigned the score of that alignment. Columns that 

are also in the reference are true positives; columns that aren’t are false positives. With a 

high enough score the classifier will identify nothing. As the score decreases, alignments 

will be ‘discovered’ and the true and false positive totals will increase. 

Plotting true and false positives produces the ROC curve, giving a visual 

indication of how well the hypothetical classifier is performing. See figure B.1. A perfect 

classifier would discover all true positives before any false positives; the curve would 
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hug the left and top edges of the unit square. A perfectly bad classifier would hug the 

bottom and right edges, discovering all false positives before any true positives. Thus the 

area under the ROC curve gives a measure of the quality of the classifier. 

As pointed out in Gribskov and Robinson (1996), it is more meaningful to ignore 

any true positives that score lower than a certain number n of false positives. They define 

ROCn to be the area under the curve when only the n highest scoring false positives are 

considered. Figure B.1(b) demonstrates this measure. 
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score FP TP total FP total TP 
103 36 267 36 267 
81 63 294 99 561 
77 152 311 251 872 
73 84 303 335 1175 
66 33 195 368 1370 
52 162 272 530 1642 
51 53 244 583 1886 
39 6 186 589 2072 
38 8 118 597 2190 
37 4 93 601 2283 
36 2 60 603 2343 
35 0 53 603 2396 
34 10 60 613 2456 
33 19 92 632 2548 
31 1 46 633 2594 
30 11 85 644 2679 
29 15 68 659 2747 
26 0 48 659 2795 
24 0 50 659 2845 
23 16 147 675 2992 
22 8 196 683 3188 
21 0 29 683 3217 
20 5 39 688 3256 
19 22 153 710 3409 
18 5 99 715 3508 
16 0 20 715 3528 
15 7 173 722 3701 
14 0 28 722 3729 
13 19 62 741 3791 
12 79 35 820 3826 
11 126 75 946 3901 
10 224 48 1170 3949 
9 470 114 1640 4063 
8 539 29 2179 4092 
7 840 59 3019 4151 
6 837 23 3856 4174 
5 603 9 4459 4183 
4 416 0 4875 4183 
3 87 0 4962 4183 
2 26 0 4988 4183  

 

 (a) (b) 

Figure B.1 ROC example. (a) Alignment results relative to a known reference alignment, 

shown as true (TP) and false positives (FP) by decreasing score. Row in bold shows 

cutoff for computation of ROC1000. (b) Black line is ROC curve, plotting total TP vs. total 

FP. Red box shows calculation of ROC1000 (≈ 0.52), the ratio of the solid red area to the 

area of the red box. 
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Appendix C 

Quantum DNA Techniques 

One application of quantum alignment is to align a present day DNA sequence to 

a reconstructed ancestral sequence. The process breaks down into four parts— inferring a 

quantum sequence for the ancestor, reducing the sequence to an alphabet of 255 

representative q-bases, creating a scoring scheme reflecting the similarity of any of these 

q-bases with DNA, and aligning the quantum sequence with a DNA sequence. Choosing 

an alphabet is of practical importance, reducing the space needed to represent the 

sequence to a byte per base, and allowing alignment scoring to be implemented with a 

small lookup table. 

In sections C.1, C.2 and C.3 we synopsize solutions for ancestral inference, 

alphabet selection and scoring, due to Siepel (2005). Quantum alignment has already 

been discussed in section 4.4; here (section C.4) we describe the DNA ball generation 

algorithm required for seeding quantum vs. DNA alignment. 

C.1 Inferring Ancestral Quantum Sequence 

We are given a multiple alignment of DNA sequences for several species along 

with a phylogenetic tree topology and are to infer a quantum sequence for the ancestor. 

The first step is to decide which bases were present in the ancestral sequence and 

which were not. The latter represent indels in the hypothetical alignment of the ancestor 

to the multiple alignment. We do this using Dollo parsimony (Farris, 1977), which, as 

applied here, says that the most parsimonious explanation for a particular column has no 

more than one insertion event. The single insertion rule implies that the insertion 

occurred at the branch leading into the last common ancestor of all non-gap leaves. In the 

special case that this is a child of the root, we cannot distinguish whether we had an 

insertion before the root, followed by a deletion between the root and one child, or an 

insertion between the root and the other child. We take the ‘safe’ approach and infer a 

base. 
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The second step is to estimate the nucleotide substitution model that best fits the 

data. It is assumed that all the locations have undergone the same evolutionary process, 

and that substitutions can be modeled by a time-reversible Markov process. The REV 

model (Yang, 1994) is used. The result is a substitution rate matrix Q, its stationary 

distribution π, and a length for each edge of the tree, measured in substitutions per site. 

 

(C.1) 

 

The third step is to infer the ancestral sequence; to estimate the probability of each 

nucleotide at each non-gap position. For any column of the alignment, the rate matrix and 

branch lengths allow us to infer the nucleotides at ancestral nodes in the tree. This is 

performed with an algorithm due to Felsenstein (1981), modified by Siepel and Haussler 

(2003) to allow for gaps. For each node in the tree, it computes the probability of 

observing the leaves if that node contained a given nucleotide. More formally, let u be a 

node in the tree, bu be the length of the branch from u’s parent to u, and Lu be the 

observations in the leaf nodes descended from u. Observations include the nucleotides A, 

C, G, and T as well as gaps. We can compute 

! 

Pr(L
u
| u = x) recursively by formula (C.2): 

 

(C.2) 

 

To get the desired quantum base for this column, we adjust for the background 

distribution and normalize: 

 
(C.3) 

 

When computed for each column of the alignment corresponding to an inferred 

non-gap, the result is a sequence of quantum DNA. Figure C.1 shows an example of the 

computation for a single column. 



  64 

C.2 Choosing a Quantum Alphabet 

The set of possible quantum bases is the probability simplex over four variables, 

where we have qA+qC+qG+qT = 1. It is advantageous to represent q-bases by a relatively 

small alphabet, and to do so we choose 255 points from the simplex and assign each q-

base to a symbol representing the nearest such point. While the number of different q-

bases that appear in any sequence must be finite, in practice there is a different q-base for 

every distinct column in the multiple alignment, the number of which grows with the 

number and distances between species. These are not evenly distributed about the 

simplex—most bases falling near a simplex corner (indicating near certainty for a 

specific nucleotide) or edge (indicating a choice primarily between two nucleotides). 

 

 

Pr(Lu|A) Pr(Lu|C) Pr(Lu|G) Pr(Lu|T) obs’d species                                       . 
0 1 0 0 C human 
0 1 0 0 C chimp 
0 1 0 0 C mouse 
0 1 0 0 C rat 
1 0 0 0 A rabbit 
0 0 0 1 T cow 
0 0 0 1 T cat 
1 1 1 1 - dog 
0 0 0 1 T hedgehog 
0.000001 0.985579 0.000001 0.000009  human-chimp ancestor 
0.000148 0.826509 0.000160 0.001461  mouse-rat ancestor 
0.023284 0.024585 0.003395 0.002099  mouse-rabbit ancestor 
0.011891 0.057052 0.017836 0.940401  cat-dog ancestor 
0.000442 0.009154 0.000947 0.806805  cow-cat ancestor 
0.000357 0.020443 0.000071 0.000138  human-mouse ancestor 
0.000065 0.002450 0.000153 0.657229  cow-hedgehog ancestor 
0.000001 0.000345 0.000001 0.000281  human-cow ancestor 

(a) 

Pr(A) Pr(C) Pr(G) Pr(T)  species                                       . 
0.002652 0.438488 0.001063 0.557797  human-cow ancestor 

(b) 

Figure C.1. Quantum inference example. (a) Probability of observed subtree given 

specific nucleotide at each node. (b) Probability of each nucleotide at root, adjusted for 

background distribution. 
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The method used is a clustering scheme that attempts to minimize the overall 

error in encoding the quantum sequence with the chosen alphabet22. The simplex is first 

carved into 175 cells, and an initial alphabet is made consisting of the centroids of each 

of these cells. Each observed q-base would be assigned to the single point in its box. The 

total error in each box is measured and whichever box has the largest error is granted a 

second point. K-means is used to determine a good placement of the two points in that 

box so as to minimize error. The process is repeated—the box with the largest error is 

granted an extra code—until all 255 codes have been assigned. 

The above method has some potential drawbacks. Every box is assigned a code 

even if there are no q-bases observed in that box. These codes could be assigned to other 

boxes to reduce error. Further, the method does not guarantee that a q-base will be 

assigned to the nearest code. 

The importance of the alphabet selection to the results is an open. While it is 

likely that some alphabets would perform poorly, it is not yet clear to what extent it is 

necessary to tune the alphabet to the specific alignment problem, and whether the gains in 

alignment from optimizing the alphabet are worth the computation spent on the task. 

C.3 Quantum versus DNA Scoring 

The following derivation is due to Haussler (2005). Suppose we observe the 

situation shown in figure C.2. d is a base in a DNA sequence, q a base in a quantum 

sequence, and t the evolutionary distance between them. Assume we know t, and that we 

know q (i.e. we know qx = 

! 

Pr(q = x),x " {A,C,G,T}). We also assume we have some 

model that estimates 

! 

Pr(d |q = x,t) and the stationary distribution 

! 

Pr(d = x). 

We have two hypotheses, H1, that d and q are related, and H0, that they are not. 

We can compute the probability of this observation for both hypotheses: 

 (C.4) 
 

and from this we can compute a log odds score: 

                                                

22  The error measure used is symmetric relative entropy (symmetric Kullback-Leibler distance), but other 
measures might perform as well. 
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(C.5) 

 

When q is in a quantum sequence inferred from a multiple alignment of its descendants, 

the model is a substitution matrix estimated from the alignment (the shaded triangle in 

figure C.2), and the stationary distribution is from the same model. We’re making the 

implicit assumption that substitution rates in the shaded triangle are the same as those in 

the larger evolutionary context that contains d and q. 

C.4 DNA Ball Generation 

The ball generation algorithm, Generate-DNA-Ball, emits all DNA words that 

score at least Tscore when aligned, without gaps, to quantum word q of length w. It is a 

simple depth-first search with pruning of low-scoring prefixes. In lieu of recursion, the 

generated word is used as a stack. Performance characteristics of this algorithm have not 

been measured. In practice the performance has not been noticeably detrimental for word 

sizes up to 13. Run time could potentially be improved by changing the order in which 

the word is scanned, visiting locations with a wider score discrepancy first. 

 

 

 

Figure C.2. Quantum scoring context. t is the evolutionary distance between DNA base d 

and quantum base q. q is inferred from descendent tree in yellow. 
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Generate-DNA-Ball(q,w,Tscore) 

9 lowerw = Tscore 

10 for i = w-1 downto 1 

11  loweri = loweri+1 -

! 

max
x"{A ,C ,G,T}

s(x,qi+1) 

12 i = 1 

13 dword1 = “$” 

14 score = 0 

15 while i > 0    while we haven’t considered all words… 

16  if dwordi ≠ “$” subtract score for previous symbol 

17   score = score – s(dwordi ,qi) 

18  dwordi = Next(dwordi) try next symbol 

19  if dwordi = “$”  all symbols tried; backtrack 

20   i = i-1 

21   continue 

22  score = score + s(dwordi ,qi) add score for this symbol 

23  if score < loweri score too low—prune (go undo this symbol) 

24   continue 

25  if i < wordLen  word incomplete, move to next position 

26   i = i+1 

27   dwordi = “$” 

28   continue 

29  emit dword 
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Appendix D 

Linear Inference Techniques 

While it is not often mentioned in discussion of (1.1)-based alignment, computing 

the score for a given alignment is a linear operation. The score is the product of a feature 

vector, giving the count of each feature (the sixteen nucleotide pairs, gap open and gap 

extend), and the score vector (sAA through sTT, sopen and sextend). (see figure 1.1(c) for an 

example). From this viewpoint it is natural to think of linear supervised learning 

techniques to find a good score vector from sample alignments. 

While the author had little success using these techniques for local alignments in 

large sequences, others have had success using them for global alignments on relatively 

short sequences, such as proteins. We include a cursory description of these techniques 

here. 

D.1 Linear Discriminator 

If we have samples of both positive ( +) and negative ( –) alignments we would 

like to find a score vector S that will discriminate between the two sets. That is, for all 

! 

A "
+ and 

! 

B "
–, 

! 

A " S > B " S . Linear discrimination (LD) is a well-studied problem, 

and we will not go into details here; we only mention that among the difficulties in 

applying LD to alignment scoring are the size of the problem and the fact that complete 

discrimination is unlikely in practice. Joachims (2003) presents an algorithm to address 

these issues, with some constraints. 

The author’s own efforts were unsuccessful. Positive samples were generated by 

aligning two sequences from the HOXD region of human and mouse (about 1 Mbase), 

using a starting scoring model. Negative samples were generated by aligning human to 

the reverse (not reverse-complement) of mouse. Using libsvm (http://www.csie.ntu.edu. 

tw/~cjlin/libsvm), an off-the-shelf LD learning program (support vector machine with a 

linear kernel), two major problems were encountered. First, gap scores were not properly 

constrained; often the ‘best’ solution (from the standpoint of SVM) rewarded gaps rather 
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than penalize them. Second, the size of the problem (≈60K positives, 35K negatives) was 

vastly larger than the program could keep track of in memory. 

D.2 Inverse Alignment 

Another approach is to treat the problem as a linear constraint problem, an idea 

due to Kececioglu and Kim (2006). Though the solution could be extended to include 

negatives, here we will describe it when only positive samples are available. The goal is 

to find a score vector that (1) makes each sample’s alignment optimal (or as close as 

possible), (2) properly constrains gap scores, and (3) maximizes the margin. 

The basic idea is that a particular alignment’s optimality region, the region of 

scoring space in which it is optimal, is convex with linear boundaries. We do not, 

however, have to identify all the boundaries. We only have to find a point in the 

optimality region. To find a score vector that makes all alignments optimal, we must find 

a point in the intersection of all optimality regions. In practice the intersection will be 

empty. So an additional sub-optimality control ≥0 is added that requires each alignment 

only score within some fraction of optimal. More formally, for any alignment A in + 

and any other alignment B of the same two sequences, we require that 

 (D.1) 
 

Kececioglu and Kim (2006) give an ingenious algorithm that solves the problem 

quickly, finding the smallest possible  value (to any desired accuracy) as well as a point 

that meets all three requirements. The algorithm makes use of linear programming, using 

an off-the-shelf linear programming package such as the GNU Linear Programming Kit 

(GLPK, http://www.gnu.org /software/glpk). A key realization is that we can determine 

whether we satisfy (D.1) for all B by determining whether (D.1) holds for an optimal 

alignment B*. 

Here we describe the algorithm as it applies to finding the two gap scores, open 

and extend, with substitution scores fixed. We assume that  is fixed (initially at 0). We 

begin with a set of (at most) | +|+2 linear constraints. Open and extend scores must be 

negative, constraining us to the lower left quadrant of the two-dimensional score space. 

We can then add one linear constraint for each alignment in +, to force it to score at 
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least zero23. Using linear programming, we find a point that satisfies all constraints and 

maximizes margin (or some other desirable feature). If no such point can be found, the 

intersection of the constraints is empty; this means there is no solution for this value of  . 

Otherwise, the solution point is a score vector potentially satisfying criterion (1). 

We use this vector with each sample, in turn, finding an optimal alignment (the 

alternative) of its two sequences. If for every sample the original alignment scores as 

well as the alternative found (with consideration for ), then we have a solution. If some 

sample fails, it is easily converted into an additional linear constraint that will make the 

original score as well as the alternative (again, with consideration for ). We add this 

constraint to the set and solve again. Eventually we will either find a solution or reach a 

point where the constrained space is empty, indicating that  is not viable. The minimum 

value of  can be found by a simple binary search over a reasonable search interval, such 

as (0,1)24. 

The author attempted to use this as part of an iterated score inference scheme, 

using substitution scores inferred as per Chiaromonte et al. (2002). However, as a 

function mapping one set of gap scores to another, this process behaves badly. Small 

changes in the input gap scores led to vastly different output scores, seemingly without 

rhyme or reason. This would produce very poor convergence behavior. 

We feel the method has promise, though, and deserves further study. Kececioglu 

and Kim (2006) have shown some success in inferring protein alignment scores. 

                                                

23  Allowing the possibility that an optimal alignment has a negative score would disallow sub-optimality. If 
score(optimal alignment B)<0, (D.1) could be satisfied only when A is also optimal and =0. 

24  A solution for =1 means all alignments score at least half as high as an optimal alignment. 
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Appendix E 

Seed Packing 

In this section we discuss how redundancy is removed from the seed word, 
allowing it to be used as an index for the seed word position table (section 4.2, figures 4.1 
and 4.2). The seed word covers L nucleotides, which must be reduced to a 2W-bit index. 
The scheme presented here reduces the number of operations necessary for packing 
seeds. This has a negligible effect on the overall performance of LASTZ—seed packing 
is only used during the seeding stage, which is overwhelmed by the gapped alignment 
stage. Nonetheless, we include this discussion because in other computational contexts 
this reduction may be effective. 

Nucleotides are encoded in the seed word as a concatenation of two bit fields, 
encoding A as 00, C as 01, G as 10 and T as 11. This particular encoding was chosen so 

that it is easy to determine if a base is a purine (A or G, second bit 0) or pyrimidine (C or 

T, second bit 1). Moreover, when comparing two aligned bases we can quickly determine 

whether they are a transversion (second bit different) or not (second bit the same). The 
seed word’s L nucleotides are thus encoded as a 2L-bit value. Similarly, we encode the 
seed pattern two bits per position; matches are encoded as 11, don’t-cares as 00, and 

transition-matches as 01. 

The simplest scheme for packing the seed word would simply remove the bit 
positions that are zero in the pattern, shifting bits to the right to fill the holes while 
retaining the order of bits in the unpacked word (figure E.1(a)). Maintaining bit order is 
unimportant, though, and by sacrificing it we can (in nearly all cases) reduce the number 
of operations needed for packing. Figure E.1(b) gives an example. 

This packing method can support T-matches at no additional cost. By encoding a 
T-match as bit pair 01, the packed seed retains for that position only the bit 

distinguishing between purine and pyrimidine. If two seed words have the same bit in 
that position, they either match or are a transition. Figure E.1(c) shows an example of 
packing a seed containing a T-match. 

The packing of any seed pattern can be performed by a series of shift-and-mask 
operations. Given a seed, how can we find the best packing? Since LASTZ allows the 
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user to specify any seed, it is imperative that it can quickly find an optimal or near-
optimal packing. LASTZ includes a greedy algorithm for this purpose. Starting with the 
encoded seed pattern and initial goal pattern (the least significant 2w bits), it finds the 
shift-and-mask operation that will cover the most bits in the goal. It then removes those 
from both the pattern and the goal, and tries again. The result is never worse than the 
simple scheme, and is usually much better. For all but nine of the ≈20,000 possible 12-of-
19 seeds, the greedy algorithm finds a packing with fewer than five operations. 

 

 (a) 

 

(b) 

 

(c) 

 

Figure E.1 Seed packing. (a) Straightforward packing of 12-of-19 seed pattern’s 38 bits 

to 24 bits requires six shift-and-mask operations. (b) Same seed can be packed with only 

three shift-and-masks. (c) Changing one position to a T makes an 111
2 -of-19 pattern; three 

shift-and-masks are still sufficient to pack to 23 bits. 
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Table E.1 Comparison of greedy seed packing to optimal for all 12-of-19 seeds. 

optimal 
operation count 

greedy 
operation count 

 
number of seeds 

2 383 
3 463 2 
4 18 
3 9865 
4 8465 3 
5 8 
4 244 4 
5 2 

 

 

Calculation of an optimal packing is a more computationally expensive 

undertaking, searching for a shortest path of operations mapping the pattern to the goal25. 

A meet in the middle search reduces the time and space drastically, but for many seeds, 

especially those containing T-matches, it is still very costly. Table E.1 shows how well 

the greedy algorithm performs, relative to optimal, for all 12-of-19 seeds containing only 

matches and don’t-cares. For 54% of the seeds it finds an optimal packing, and for all but 

0.13% of the seeds it is within one of optimal (26 seeds, shown in bold). 

Unfortunately, allowing a general seed pattern incurs a run-time cost. A table 

driven loop, performing one shift-and-mask each time through the loop, is no match for 

the same series of operations hard-coded and optimized by the compiler. Figure E.2 

  

 

 
uint32_t pack_seed (uint64_t word) { 
    return ( word        & 0x00F0CCFF) 
         | ((word >> 16) & 0x000F3000) 
         | ((word >> 28) & 0x00000300); 
} 
 

Figure E.2 Hard-coded seed packing. Machine-written C routine implementing the seed 

packing of figure E.1(b). 
                                                

25  Care must be taken to ensure that no bit is “moved” more than once; multiple moves would prevent 
parallelization at runtime. 
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shows a C routine implementing the packing of the default 12-of-19 seed using the 

operations discovered by the greedy algorithm (i.e. these are the same operations used in 

LASTZ for this seed). Creating the seed position table for a 100Mbase sequence took 9.0 

seconds when the operations in figure E.1(b) were performed by a general loop. Using 

the hard-coded routine of figure E.2 reduced this to 7.7 seconds. For comparison, a hard-

coded routine implementing the operations in figure E.1(a) took 8.3 seconds. While the 

reduced operation packing is about a 7% improvement, it represents a miniscule portion 

of the overall alignment time. 

The LASTZ distribution includes a program to convert a seed pattern to such a 

routine, which can then be compiled as part of LASTZ. A better solution would be to 

compile it to a dynamically linked module, and allow specification of the module on the 

LASTZ command line. 
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