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B Abstract The genomes from three mammals (human, mouse, and rat), two worms,
and several yeasts have been sequenced, and more genomes will be completed in the
near future for comparison with those of the major model organisms. Scientists have
used various methods to align and compare the sequenced genomes to address critical
issues in genome function and evolution. This review covers some of the major new
insights about gene content, gene regulation, and the fraction of mammalian genomes
that are under purifying selection and presumed functional. We review the evolution-
ary processes that shape genomes, with particular attention to variation in rates within
genomes and along different lineages. Internet resources for accessing and analyzing
the treasure trove of sequence alignments and annotations are reviewed, and we dis-
cuss critical problems to address in new bioinformatic developments in comparative
genomics.

INTRODUCTION

Determining the genome sequences of humans and model organisms is a landmark
achievement in the life sciences. Analysis of the individual genome sequences gives
much insight into genome structure but less into genome function (84, 179). One
grand challenge for the next phase of genomics research is to distinguish func-
tional DNA and then assign a role to it (35). Comparative genomics is one of
the major approaches used in the functional annotation of genomes. Functional
sequences are subject to evolutionary selection, which can leave a signature in
the aligned sequences. Purifying (negative) selection causes sequences to change
more slowly than the bulk, nonfunctional sequences (Figure 1), and Darwinian
(positive) selection causes sequences to change more rapidly. In principle, com-
paring genomic sequences can find these signatures of selection, and hence one
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Figure 1 Evolution of functionally important regions over time. Immediately after a spe-
ciation event, the two copies of the genomic region are 100% identical (see graph on left).
Over time, regions under little or no selective pressure, such as introns, are saturated with
mutations, whereas regions under negative selection, such as most exons, retain a higher
percent identity (see graph on right). Many sequences involved in regulating gene expression
also maintain a higher percent identity than do sequences with no function.

can infer that such sequences are functional. Other analytical approaches, still in
their infancy, are designed to predict the role of those sequences. However, both
the inference of function and the assignment of a role to sequences are predictions.
They need experimental tests, such as those currently being done on a large scale
in the Encyclopedia of DNA Elements (ENCODE) project (35).

Whole-genome comparisons based on DNA-level alignments have greatly ex-
panded the precision and depth of evolutionary analysis and functional inference.
The first genomes sequenced were so phylogenetically distant that comparisons
were limited to the encoded protein sequences. Thus, a large set of common pro-
teins could be identified in yeast, worms, and flies (153), but noncoding sequences
could not be meaningfully compared. Detailed information about the evolution and
function of genomes can be gathered by comparing species that are more closely
related. For example, comparing three genera of enteric bacteria (Escherichia coli,
several species of Salmonella, and Klebsiella pneumonia) thought to have diverged
about 150 mya showed that most of the genes are conserved and tend to be in the
same order, and thus most of the genome was stable over this period (126). In the
past two years, several genome comparisons at this closer phylogenetic distance
have been published, beginning with comparison of the mouse and human genomes
(132), followed by detailed comparisons of multiple species of budding yeasts (33,
34, 90) and of Caenorhabditis elegans with C. briggsae (167). A light-coverage
sequence of the dog genome (96) provides additional insights into comparative
genomics. Our review focuses on these recent results from whole-genome align-
ments, and those from a pilot study of deep phylogenetic sequencing of the CFTR
locus (175). However, the biological issues are informed by results from earlier
locus-specific studies, and some of these are also included.

The publicly available genome sequence data and related resources are a treasure
trove for biologists seeking functional elements in a particular region or wishing
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to perform genome-wide studies. However, as biologists dive into this rich pool, it
is appropriate to reflect on potential pitfalls for the endeavor; these are discussed
throughout. Existing resources and tools for investigators to delve more deeply into
such issues and to use comparative genomics in their experimental investigations
are summarized. Finally, we discuss new directions for software development to
improve the use of comparative genomics.

LESSONS LEARNED FROM COMPARATIVE GENOMICS

What Have We Learned About Genes by Comparing
Genomic Sequences?

GENE PREDICTION IN SINGLE-GENOME ERA The evolution of gene prediction
tools closely follows developments in genomic biology. Initial gene prediction
tools such as Grail (178) were designed to locate protein-coding exons within
the short fragments of genomic DNA that were available at the time. Advances
in sequencing technology accelerated the assembly of longer segments of ge-
nomic DNA, which could contain multiple genes on both strands. This prompted
the development of algorithms capable of predicting and assembling exons into
multiple gene structures on both strands of a single genomic fragment. These
can be called conventional gene prediction algorithms; here the word “conven-
tional” is used to emphasize the fact that these tools do not use information from
genome comparisons. These algorithms include Genscan, the most popular gene
prediction tool (24), GenMark (117), Fgenesh (155), GenelD (144), and others
(for an excellent overview of conventional gene prediction algorithms see Refer-
ence 190). These tools use sophisticated pattern recognition approaches to find
protein-coding regions within genomic DNA and to assemble them into genes.
However, such patterns may occur by chance, leading to a high false-positive rate
characteristic of most current gene prediction algorithms (69, 150). For instance,
the number of Genscan predictions in the human genome is more than twofold
higher than the count of experimentally verified genes (65,010 versus 24,037, re-
spectively; based on Ensembl release 18.34.1, http://www.ensembl.org). Although
some of the ~41,000 additional predictions may represent true novel genes, many
are likely false positives. This is why computationally predicted genes are rou-
tinely compared to experimental data or known sequences, most often to Ex-
pressed Sequence Tags (ESTs), to identify true predictions. A current release of
the UniGene database (http://www.ncbi.nlm.nih.gov/UniGene) contains almost 4
million human ESTs. One may think this adequate for accurate gene annotation
in humans, but even this large number of ESTs does not fully sample all tis-
sues and all stages of development (190). Also, most methods of constructing the
cDNA clones leave the 5’ terminal exons under-represented in EST databases.
Most other species have substantially fewer ESTs, and thus the problem of fully
annotating genes is exacerbated in those species. Thus, other approaches are
needed.
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COMPARISON OF MULTIPLE GENOMES OFFERS A RELIABLE SOLUTION The avail-
ability of multiple genomes, a scenario difficult to imagine a few years ago, offers
the prospect of improved gene prediction by comparing genomic regions from
multiple species and finding conserved (relatively unchanged) regions (Figure 1).
For example, in closely related species such as human and mouse, exons of protein-
coding genes tend to change substantially slower that the surrounding noncoding
DNA. This is because a mutation that changes an amino acid is less likely to be re-
tained in a functional protein-coding gene than a mutation that does not (109). The
gene structure (the number and order of individual exons) is also well conserved
among closely related species (12). Thus, genes can be predicted by comparing
sequences from two (or more) genomes because we expect individual exons and
their relative positions to be conserved.

Using comparative information in gene prediction results in a marked increase
in sensitivity of predictions and substantially reduces the number of false positives
(100). The improvement is dramatic, but it does not apply in all cases. In particular,
the gain and loss of exons or entire genes in one species limits the effectiveness
of this approach. For instance, although the protein complement in two mammals
may differ by less than 1% (132), about 4% of the 19,500 protein-coding genes
identified in the C. briggsae genome have no detectable matches in the C. elegans
genome (167).

Current state-of-the-art methods for comparative prediction of protein-coding
regions can be divided into three categories: (a) alignment-based algorithms that
reconstruct gene structures by integrating a global alignment or a collection of local
alignments with conventional gene prediction methods, (b) algorithms that perform
alignment and gene recognition simultaneously, and (c) evolutionary algorithms
that detect the signature of purifying selection within genomic alignments.

ALIGNMENT-BASED ALGORITHMS The first category includes methods such as
ROSETTA (12), SGP1 (182), SGP2 (144), TWINSCAN (100), and DOUBLE-
SCAN (128). ROSETTA reconstructs colinear gene structures from global align-
ments and defines exons as subsequences bounded by splice sites [modeled using
the Maximum Dependence Decomposition Approach (23)]. It assumes that there
is only one gene in each of the two input sequences. SGP1 reconstructs genes
from a collection of local alignments between two sequences. Gene structures are
reconstructed independently on each sequence. Exons are also defined as stretches
of DNA between splice sites and/or start/stop codons. SGP2 assesses the reliability
of gene models predicted by GENEID, a conventional gene predictor (68), using
TBLASTX matches to another genome (2). Similarly, TWINSCAN represents a
direct extension of the Genscan algorithm (23, 24) that integrates conservation
information between two sequences into probabilities reported by the original
Genscan model. TWINSCAN, like Genscan, models exons using frame-specific
hexamer frequencies (53). DOUBLESCAN uses a Pair Hidden Markov Model
(Pair HMM) to reconstruct gene structures from a series of local alignments cre-
ated with BLAST (2).
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SIMULTANEOUS ALIGNMENT/GENE FINDING ALGORITHMS One-step algorithms uti-
lize a novel Generalized Pair HMM (GPHMM) approach for simultaneous align-

ment and prediction of genes from two unaligned, unannotated sequences. The

GPHMM was implemented in the SLAM gene prediction program (1, 143). Be-

cause alignment and prediction are simultaneous, SLAM assumes that the order

and the direction of genes and their exons are conserved between the two compared

sequences.

EVOLUTIONARY ALGORITHMS Evolutionary algorithms do not rely on sequence
similarity per se, rather they test whether the homologous sequences are truly
protein-coding by using evolutionary signals within these sequences (137, 138).
These signals are derived from the fact that nucleotide substitutions in coding
regions can be classified as nonsynonymous (those which lead to amino acid re-
placements in the encoded polypeptide) or synonymous (or silent, those which
do not change the encoded amino acid). The amount of each type of change is
commonly given as the ratio Ka, which is the number of nonsynonymous sub-
stitutions per nonsynonymous site, and Kg, which is the number of synonymous
substitutions per synonymous site.

Aligned genomic sequences from two species are deemed coding if they share
a reading frame in which K, is significantly less than Ksg, i.e., the Ka/Kg ratio
is much lower than expected for neutrally evolving DNA. This is because in the
majority of true protein-coding regions nonsynonymous changes are subject to
strong selective constraints (110). A server called ETOPE (136) is available for
applying this evolutionary test to computationally predicted exons (Table 1).

CHALLENGES OF COMPARATIVE GENE PREDICTION Current methods for compar-
ative prediction of protein-coding regions have several limitations. First, existing
methods cannot be easily extended to three or more species, due to the dramatic
increase in computational complexity (143). A high-quality draft sequence of the
rat genome is available (148), and the dog genome is currently being actively se-
quenced. In a few years genomic sequences for dozens of vertebrate organisms
will be available. Thus, it is necessary to develop tools that can use multiple se-
quences, which will dramatically improve the quality of genome annotation for
these species.

Second, most current methods require training sets to derive parameters for un-
derlying models (with the exception of evolutionary algorithms). Therefore, these
programs are conservative, which may prevent detection of unusual features such
as long exons, exons flanked by noncanonical splice sites, or single-exon genes.
At present, it is virtually impossible to derive representative training sets for com-
parative methods because such sets must contain true orthologs from two species
whose sequences are compared. In other words, to derive a reliable training set
from a pair of genomes they must already be well annotated. For example, the
DOUBLESCAN algorithm was trained using a set of only 36 genes (128). Depen-
dence on training sets restricts current methods to a particular species; a program
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TABLE 1 Internet resources for whole-genome comparative analysis and associated tools

Resource

URL

UCSC Genome4 Bioinformatics
Ensembl

MapViewer

VISTA Genome Browser
K-BROWSER

Comparative Regulatory Genomics
GALA

EnsMart

ETOPE

PipMaker and MultiPipMaker
VISTA server

MAVID server

zPicture server

http://genome.ucsc.edu/
http://www.ensembl.org/
http://www.ncbi.nlm.nih.gov/mapview/
http://pipeline.lbl.gov/
http://hanuman.math.berkeley.edu/cgi-bin/kbrowser2
http://corg.molgen.mpg.de/
http://www.bx.psu.edu/
http://www.ensembl.org/EnsMart/
http://www.bx.psu.edu/
http://www.bx.psu.edu/
http://www-gsd.Ibl.gov/vista/
http://baboon.math.berkeley.edu/mavid/
http://zpicture.dcode.org/

rVISTA server

http://rvista.dcode.org/

trained on a set of human genes cannot perform well on Drosophila or Caenorhab-
ditis genomes, for example. It may also be difficult to derive representative training
sets from newly sequenced genomes where gene information is scarce.

Third, most current methods for comparative gene prediction assume that gene
structures are colinear in both sequences. This limitation prevents these methods
from predicting mosaic genes or genes containing duplicated or translocated ex-
ons. Although it is believed that such genes are not common, recent studies on
segmental duplications in the human genome suggest that chromosome 22 alone
contains 11 mosaic genes (10). Therefore, it is important to develop a tool that
deals with such instances.

Fourth, although more reliable than conventional algorithms, predictions made
by comparative gene-finding tools are often inconsistent (i.e., a prediction made
by one algorithm is omitted by another). For example, initial analysis of the mouse
genome reported a total of 22,011 protein-coding genes included in the “consensus
dataset” (132). However, the supplementary information section of the paper shows
that the various methods predicted far more genes. For example, 48,451, 48,462,
and 14,006 genes were predicted by SGP2, TWINSCAN, and SLAM, respectively.
What is the biological significance of genes that are predicted but not included in
the consensus data set? This question is difficult to answer with present methods,
especially if these additional genes do not match existing ESTs or known protein
sequences. However, such additional genes exist in great numbers. For example,
if we assume that there is a complete overlap between the consensus data set of
22,011 genes and the set of 48,451 genes predicted by SGP2, then how can we
classify the remaining 26,440 genes?
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IMPLICATIONS FOR GENE NUMBER Comparing genomic sequences from multiple
species has dramatically changed our understanding of how many genes it takes
to make a human (or generic mammal) (Figure 2). The textbook figure of 100,000
genes began to crumble in 2000 with the publication of a comparative study sug-
gesting that the lower bound of the human gene number may be only 28,000
(37). Comparing human genomic sequences with the genomic DNA of pufferfish
(Tetraodon nigroviridis) produced this unexpectedly low number. Pufferfish was
chosen because of its compact genome size and its substantial divergence from
human, which eliminated virtually all noise due to nonfunctional conservation.
Human and pufferfish are separated by ~400 MY. Any genome region preserved
over such evolutionary distance will likely be functionally important. However, the
high degree of divergence also implies that some mammal-specific genes are not
counted in the total gene number estimate, making it too conservative. One way to
put mammal-specific genes back into the picture is to compare the human genome
with that of another mammal. Such an opportunity arose with the completion of
the mouse genome project. In the case of human/mouse comparison, the use of
experimentally derived data (such as cDNAs) with comparative gene predictors
resulted in an estimate that is only slightly higher than the pufferfish-based count,
i.e., about 30,000 genes (132).

The exact count of human (or mammalian) genes remains unknown, but it is
likely not much higher than 30,000-35,000. A refined analysis of gene structure and
ability to reliably identify unusual genome features such as overlapping or nested
genes will contribute to the resolution of the gene count controversy. Comparative
gene prediction methods will be essential to achieve this goal. For example, a
recent application of evolutionary methods suggested that human genome alone
may have as many as ~13,000 additional exons conserved with mouse and rat
(137). The exact count of human genes may remain elusive for some time, but we
expect the range of estimates to continue to tighten over the next few years.

What Have We Learned About Regulation?

DNA sequences that act in cis to regulate the timing and level of gene expression
[cis-regulatory modules (CRMs)] include promoters, enhancers, silencers, and
insulators/boundary elements. Promoters and enhancers are thought to be well
conserved, and numerous examples support this conclusion. One of the first cellular
enhancers discovered, which is in an intron of the kappa immunoglobulin light
chain gene, was initially identified as a strongly conserved noncoding segment
of the gene (49). Many studies (early examples include 44, 146) used alignments
of promoter and enhancer sequences to find critical sequence motifs, which are
generally binding sites for transcription factors. This approach, called phylogenetic
footprinting (70, 173), works well for interspecies comparisons of noncoding DNA
sequences (Figure 2). Fewer examples of silencers and insulators are available,
although a binding site for the protein CTCF is a common feature of boundary
elements (154). Critical studies of the interspecies conservation of these other
types of CRMs are important topics for future studies.
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Figure 2 Use of whole-genome comparisons at various evolutionary distances to annotate
the human sequence. Shaded areas representing different methods underlay a phylogenetic
tree of selected vertebrates. Phylogenetic footprinting looks for the signature of negative
selection, which shows regions that have undergone significantly less change than other,
largely neutral DNA. Regulatory sequences (e.g., transcription factor binding sites), unlike
protein-coding regions, are subject to rapid turnover (38, 116). Thus, predicting regulatory
regions is more reliable when comparing genomic sequences at different divergence levels,
such as the human (Homo sapiens) genome with the mouse (Mus musculus), rat (Rattus
norvegicus), dog (Canis familaris), chicken (Gallus gallus), and fish (Fugu rubripes and
Tetraodon nigroviridis) genomes. Some genes may have dramatically different expression
levels in more divergent species (171). In this case comparing sequences from species be-
longing to the same class or family (phylogenetic shadowing) is more appropriate (18).
Finally, to identify species-specific elements, one can analyze substitution polymorphisms
in a sample of individual sequences from the same species, a technique termed population
shadowing (120).
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Several studies used a high level of sequence conservation to successfully pre-
dict and test enhancers. One of the most dramatic examples is a highly conserved
noncoding region located between interleukin genes (114) of human and mouse.
Removing this highly conserved sequence from a large DNA fragment containing
several genes led to a loss of expression of the interleukin genes in about half the
cells that normally express them, thus showing what is required for efficient ex-
pression. Other studies found particularly well-conserved sequences within known
mammalian regulatory elements that led to the identification of additional protein-
binding sites needed for full regulatory function (e.g., 48, 73). Studies of the SCL
locus show that extending the phylogenetic distance of the comparison to human
and chicken (63) allows detection of some but not all (64) functional enhancers.
Analysis of a gene paralogous to SCL, LYLI, indicated that human-marsupial com-
parisons may be particularly effective for predicting regulatory elements (27). In
some loci, such as HOX genes, CRMs are conserved between mammals and fish
(6). Other studies, termed phylogenetic shadowing (Figure 2), focus on alignments
of a larger number of more closely related species, such as several higher primates,
to improve the accuracy of CRM detection (18, 72, 73).

However, the simple model of CRMs under strong purifying selection, and
thus rarely changing, is not sufficient. Studies of the stripe 2 eve enhancer in sev-
eral species of Drosophila show that many protein-binding sites have changed
considerably while retaining the same expression pattern of eve (116). These
data indicate a slow but continual turnover of protein binding sites under con-
stant stabilizing selection, such that some changes compensate for alterations at
other sites. In agreement with these results, a study of many CRMs shows that
about 30% to 40% of the functional sites in human were no longer functional in
mouse, which supports widespread turnover of transcription factor binding sites
(38).

Studies were conducted to detect differences in binding sites in situations in
which orthologous genes were differentially regulated. For instance, to support a
longer gestation, higher primates have prolonged expression of the gamma-globin
gene into the fetal period; other mammals, including primitive primates such as
lemurs, express gamma-globin only in the embryo. Because of this difference, part
of the regulatory region immediately upstream of the transcription start site is not
conserved between primates and other mammals (85). Scientists identified a short
segment contributing to the difference in expression by looking for regions that
did not align (71).

Other factors add to the challenge of accurately predicting CRMs from se-
quence comparisons. One is the considerable variation in the rate of neutral
evolution along chromosomes (77, 132, 186), which is discussed below. Thus,
a noncoding conserved sequence with a particular alignment quality score in a
slowly changing region is less significant than one with an identical score in a
rapidly changing region. Methods are being developed to accommodate local rate
variation in the evaluation of the likelihood that a sequence is under selection
(108, 132).
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A second complication is the substantial distance that can separate CRMs from
their target genes. Within mammalian globin gene complexes, major regulatory
elements can be 40-60 kb from the target promoters (67, 80), and the highly
conserved noncoding sequence (mentioned above) can affect interleukin genes as
much as 200 kb away (114). In some cases, promoters for genes not affected by the
CRM are located between the CRM and its target. Thus, proximity is not always a
reliable indicator of the target of a predicted CRM, and a considerable amount of
DNA around any gene needs to be examined for a potential role in regulation. The
long-distance effects, coupled with the variation in local rates of evolution, make
the job of uniquely identifying CRMs even more difficult. For example, the major
distal regulatory element of mammalian beta-globin gene complexes, the locus
control region, stands out in interspecies comparisons as the only extensive non-
coding region that aligns within about a 250-kb region (22, 75). In contrast, the
major distal regulatory element of alpha-globin genes is one of many conserved
noncoding sequences in a comparably sized region, and other noncoding regions
are even more highly conserved than the active CRM (54).

A third complication concerns changes in CpG island density in mammals.
CpG islands have long been associated with many regulatory elements, especially
promoters for genes expressed in multiple tissues (16). Early reports estimated that
the mouse genome lost roughly 20% of the CpG islands found in human (5, 124),
and comparing the whole genomes showed that the proportion is closer to 43%.
One example of this is found in the alpha-globin genes, HBAI and HBA2. Large
CpG islands encompass the promoters and portions of some genes in humans, but
the mouse homologs are not in or near CpG islands. The promoter sequences are
poorly conserved between human and mouse, with the matches largely limited to
one major transcription factor binding site.

Despite these serious problems in the bioinformatic prediction of CRMs based
on sequence conservation, there are reasons for optimism. First, methods for pre-
dicting CRMs are in their infancy. The largely anecdotal information summarized
here is derived from intensive study of a small number of loci. The whole-genome
sequences and alignments open the door to large-scale studies that can monitor the
local evolutionary rates and provide critical training sets for more sophisticated
approaches to predicting CRMs. Second, most studies to date have been confined
to pairwise comparisons. More genomes are being sequenced, and the additional
information in multiple aligned sequences promises to provide a substantial in-
crease in resolving power (175). Finally, it is clear that identifying clusters of
defined transcription factor binding sites can be a powerful approach to predict-
ing CRMs (14, 179a), even without information about interspecies conservation.
It is reasonable to expect that progress in combining various independent meth-
ods of predicting CRMs will generate programs with greatly improved levels of
sensitivity and specificity.

Current methods of using interspecies alignments for predicting CRMs evaluate
the alignments either for their quality, with higher scores for more slowly changing
regions, or for characteristic patterns. (Scoring for alignment quality is covered
below.) Searching for characteristic patterns in alignments is in some respects
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similar to the conventional gene prediction algorithms discussed above. The aim
is to find patterns in the alignments that are characteristic of known CRMs but
are rarely seen in neutrally evolving DNA. One approach, described by Elnitski
et al. (47), condenses the alignment to a small set of symbols that distinguish
matches, mismatches, and gaps, and also distinguishes types of matches and types
of mismatches. Alignments within a set of known CRMs serve as a training set to
estimate the frequency of all, e.g., pentamer to hexamer transitions, which can be
described as a fifth-order Markov model. Likewise, alignments within ancestral
repeats provide a negative training set to estimate the frequency of these transi-
tions in one model for neutral DNA. The ratios of the transition frequencies can
be used to compute a log likelihood that any alignment has patterns of align-
ment symbols more characteristic of CRMs than neutral DNA. This score, called
regulatory potential (47), can be generated because of the availability of the whole-
genome alignments. Initial calibration and experimental tests of the effectiveness
of this score are encouraging (76). Again, this is a fairly simple exploration of
this approach and we expect improvements both from a greater amount of data
(more genomes, larger training sets) and more statistical sophistication in the
future.

About 5% of the Human Genome is Under Purifying Selection

Detailed comparative studies of several individual genes and gene clusters in mam-
mals (often in humans and rodents) show that protein-coding exons are usually
highly conserved, the untranslated regions are less well conserved, and often the
cis-acting sequences regulating their expression are also conserved, albeit to vary-
ing extents. If these were the predominant functional DNA sequences in mam-
malian genomes, they would be the major targets for purifying selection. For
example, the five active genes in the human HBB complex consist of about 2205
bp of coding exons, 920 bp of untranslated exons, and 3640 bp of known strong
CRMs in an interval of about 68,000 bp. This corresponds to 3.3% coding ex-
ons, 1.3% untranslated exons, and 5.4% regulatory elements, for a total of 10%
presumably subject to selection. However, this exon density is roughly twice that
seen genome-wide. Analyses of both the human and mouse genomes indicate that
coding exons probably occupy no more than 1.5% of these genomes (84, 132). Ex-
trapolating from the ratio of all known functional sequences to coding sequences
in the HBB complex (10% to 3.3%), one may predict that about 4.5% of the human
genome would be under purifying selection.

This was tested by analyzing whole-genome human-mouse alignments (132). A
good genome-wide monitor of the rate of neutral substitution is the set of aligning
sites within ancestral repeats predating the human-mouse divergence, called AR
sites. Advantages and disadvantages of AR sites as models for neutral DNA are
covered below. Because the substitution rate at AR sites varies along chromosomal
DNA (77, 132), quality scores for the alignments need to be adjusted for this
rate variation. Thus, a conservation score was computed in 50-bp nonoverlapping
windows for human DNA aligned with mouse (requiring at least 45 bp to be in
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alignments), adjusting for the matches expected based on the local neutral rate (em-
pirically determined for AR sites within the surrounding region) and normalized
by dividing by the standard deviation.

The genome-wide distribution of this conservation score overlaps considerably
with the distribution of scores for ancestral repeats, but it is skewed substantially
toward higher scores (132). This indicates that a second component is present at
the higher scores, representing the sequences under selection. The distribution for
all genomic alignments was decomposed into two components, an empirically de-
termined distribution for neutral DNA (based on alignments in ancestral repeats)
and an inferred distribution for sequences under purifying selection. The subset
of sequences under selection contains at least 21% of the windows, which contain
about 25% of the human genome. Therefore, at least 5% of the human genome is
subject to purifying selection by this analysis. This is close to the value extrapo-
lated from genome-wide coding exon density and the ratio of known functional
sequences to coding sequences in the HBB complex.

The analysis summarized here does not allow each aligning segment to be
unambiguously assigned as either neutral or under selection. However, one can
compute a probability that a sequence with a particular conservation score belongs
to the subset of windows under selection (132). One version of this analysis was
implemented as L-scores (or Mouse cons track) at the UCSC Genome Browser (93).
Other methods based on multiple sequence alignments are also being implemented
(122, 164, 175), one of which is illustrated in Figure 3A.

The notion that at least 5% of the human genome is functional provides a rough
initial guide for considering the scope of the problem of functional annotation. Be-
cause about 1.5% of the genome codes for protein and about 1% is in untranslated
regions of genes (132), about 2.5% of the genome fulfills other functions. One
major additional function is regulating gene expression, and some of the noncod-
ing conserved sequences identified in this analysis fall into this category. Methods
such as computing the regulatory potential and seeking conserved clusters of tran-
scription factor binding sites should help in identifying such CRMs, as discussed
above.

Some functional regions do not fall into the three categories listed so far. Mi-
croRNA s are involved in regulating expression of genes in plants, worms, and other
species, and many microRNAs have mammalian homologs (131). The number of
examples of microRNAs involved in regulation in mammals is increasing steadily
(139). Further studies are needed to estimate how much of a genome encodes mi-
croRNAs, and one may expect improved bioinformatic approaches for predicting
their presence. It is likely that other classes of genomic sequences under selection
have not yet been defined, such as sequences involved in chromosome replication
and recombination.

One intriguing harbinger of future novel insights is a recent examination of
highly conserved nongenic sequences on human Chromosome 21 (39). These are
significantly more conserved than protein-coding exons and noncoding RNAs, and
their pattern of substitution resembles that of protein-binding segments of DNA.
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Other studies indicate that known regulatory regions are not as highly conserved
as exons (47, 132), so these exceptionally well-conserved segments may com-
prise a novel class of critical sequences. Clearly, functional investigations of these
sequences will be highly informative.

Despite the utility of this lower bound on the share of the human genome under
selection, we expect that future studies will improve and refine the estimate. The
accuracy of the decomposition of the conservation scores genome-wide depends
completely on the reliability of the AR sites as models of neutral DNA. Although
this is likely a good assessment for most sites, some of them are under selection.
Also, AR sites align between human and mouse. It is possible that this set of
ancestral repeats is biased toward those in more slowly changing regions; those
in more rapidly changing regions might not align by current methods. Improved
models of neutral DNA derived from comparisons of sequences from more closely
related species may provide a better data set for the decomposition. Finally, the
decomposition is performed on small windows, but even for windows that will
likely be in the group under selection, not every nucleotide will be under selection.
This tends to inflate the estimate of the share under selection, but it is somewhat
balanced by the fact that short regions under selection may not be included in the
windows under selection. These several limitations to the current analysis point
to the need for additional work and should serve as a caution in interpreting the
estimate of 5% of the genome under purifying selection.

Positively Selected Regions

Detecting DNA sequences evolving under positive selection is a challenge be-
cause they accumulate many changes. However, positively selected regions are
among the most interesting regions in the genome because their evolution is likely
adaptive and they frequently determine biological differences between organisms.
Among the best-characterized examples of positively selected regions are genes
encoding proteins involved in defense against pathogens, such as human histo-
compatibility determinants (83); reproduction, exemplified by the sperm protein
lysin in abalone (105); speciation, including the homeodomain protein Odysseus
in Drosophila (177); and adaptation to a new environment, e.g., lysozyme in lan-
gur monkeys (127). A comparative genomics approach can identify additional
positively selected genes by contrasting their evolutionary rates with that of con-
served genes. Genes detected by this approach are strong candidates for subsequent
functional studies.

For instance, comparing the genomes of four species of yeast (Saccharomyces
cerevisiae, S. paradoxus, S. mikatae, and S. bayanus) identified a rapidly evolving
gene YBRI184W (90). The YBR184W sequence has only 32% nucleotide identity and
13% amino acid identity across the four species. Based on absence of conservation,
YBR184W was first considered a biologically meaningless open reading frame.
However, we know that the gene is expressed. The Ka/Kg ratio for YBRI84W is
0.689, which is quite high compared to the average of 0.11 for other yeast genes.
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This suggests that positive selection played a role in the evolution of YBRI84W.
Its protein product is likely involved in gamete function because it is similar in
sequence to a yeast spore-specific protein.

Positive selection has been shown to occur after gene duplication. Comparing
mouse and human genomes located 25 paralogous clusters specific to the mouse,
each of which is orthologous to a single gene in human (132). The median Ka/Kg
values for these clusters are higher than the median value for mouse-human or-
thologs. This may reflect positive selection acting on new gene copies to evolve
new functions in the mouse. In accordance with previous findings, the two major
functional themes among mouse-specific clusters are reproduction and immunity.

Another example comes from a study of 250 young (Kg < 0.3) duplicate gene
pairs in the human genome (191). These genes are duplicated in human but not
in mouse. When the mouse ortholog is used as an outgroup, the KA/Kg ratios
differ significantly between the two duplicates for 25% of human gene pairs.
This indicates that they experienced different functional constraints after gene
duplication. Remarkably, 45% of gene pairs (113 out of 250) had Ka/Kg > 1, which
suggests positive selection possibly connected with acquiring a new function.

Mechanisms and History of Mammalian Evolution

Whole-genome comparisons offer an unprecedented opportunity to follow the
processes and rates of evolution in detail. About 25% of the human genome has
been generated since the last common ancestor with rodents; these are lineage-
specific repeats, such as Alu repeats, formed by transposition only in primates
(84). About 40% of the human genome aligns with the mouse genome, but as
discussed above only about 5% will likely be under purifying selection (132).
That leaves about 35% of the human genome that does not align with mouse
(using current technologies), and another roughly 35% that is conserved (still
present in both human and mouse) but may have no detectable function. This large
amount of aligning genomic DNA provides many insights into genome evolution,
as discussed in this and the next two sections. The nonaligning DNA is more
difficult to interpret, but we summarize some of the current thinking.

INDELS AND THEIR IMPORTANCE IN DETERMINING DIFFERENCES IN GENOME SIZE
Whole-genome comparisons contribute to a current debate about what determines
genome size. An earlier analysis of three insects (grasshoppers, crickets, and fruit
flies) suggests that genome sizes are inversely proportional to the rates of DNA
loss by small indels (e.g., 145). However, recently this conclusion was criticized
as premature (66), in part because of the small size of the data set. The availability
of several complete genomes allows us to more precisely estimate differences in
indel rates and to evaluate whether these or other factors contribute to variation in
genome size. For instance, the mouse genome is ~14% smaller than the human
genome, and the rates of small deletions are about two times higher in mouse
than in human. A detailed investigation of complete genome sequences reveals



COMPARATIVE GENOMICS 29

that this bias contributes only a small amount (1% to 2%) to the differences in
genome size. Most likely, a higher rate of large deletions explains the smaller size
of the mouse genome (132). A similar pattern was recently observed in pufferfish
(134). Spiny pufferfish have genomes twice as large as smooth puffers. Surpris-
ingly, the rate of small deletions in spiny puffers is higher than in smooth puffers.
Large insertions and deletions possibly related to transposable element activity
might play a more important role than small deletions in determining genome
size in pufferfish (134). Thus, although it is evident that indel biases may be
important in specifying genome size, additional whole-genome comparisons are
necessary to delineate the relative contribution of small and large indels in this
process.

SEGMENTAL DUPLICATIONS A high frequency of large segmental duplications was
one of the unexpected findings of the original analysis of the human genome (84).
About 3.5% to 5% of the finished human sequence consists of recent segmental
duplications, defined as duplicated sequences that are >1 kb in size and 90%
to 99.5% identity (9, 29). In contrast, only about 1.2% of the mouse genome is
in recent segmental duplications (28), whereas about 3% of the rat genome is
in such duplications (148). Segmental duplications are enriched at the breaks in
conserved synteny between the human and mouse (7). This suggests that segmental
duplications and chromosome rearrangements are connected processes in genome
evolution. Sixteen orthologous genes are involved in independent recent segmental
duplications in both human and mouse genomes (28). One can speculate that
duplication provides an evolutionary advantage for these genes in human and
mouse, as in the case of olfactory receptor genes (189).

EFFECTS OF NEIGHBORING BASES Analysis of genomic alignments assists in elu-
cidating mutation patterns on a large scale. One example is the dependence of
nucleotide substitution rates on the identity of neighboring bases. Earlier (“pre-
genomic”) studies suggested that nucleotide substitutions are context-dependent
(e.g., 101). In particular, the pattern of transitions is dominated by the effect of
CpG dinucleotides due to rapid deamination of methylated cytosines. This was
recently confirmed by a comparison of noncoding (and presumably neutral) an-
cestral repeat sequences at the 1.8 Mb of the CFTR locus among eight eutherian
mammals (165). The most pronounced context effect discovered in this study was
transitions at CpG sites. Such large-scale analyses identified additional, more sub-
tle context-dependent effects on nucleotide substitutions. Currently, these effects
do not have simple explanations and will be more evident after whole-genome
alignments are examined. Context effects are also evident in coding sequences.
Significant context effects occur even across codon boundaries (165). Consider-
ing the effects of neighboring bases significantly improves the goodness of fit
of nucleotide substitution models. This is particularly important because such
models are used in a variety of applications, e.g., phylogenetic reconstruction
(165).
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Nonuniformity of Neutral Evolutionary Rates Within Species

REGIONAL VARIATION IN THE RATES OF DNA CHANGE Since the early days of pro-
tein sequencing, it has been apparent that some proteins change very little over
evolutionary time and others change enormously. The range in rates of amino acid
substitution is about 1000-fold, which is usually interpreted as a reflection of vari-
ation both in the portion of amino acids that is under purifying selection and the
severity of that selection (reviewed in 183). However, the rate of change in nu-
cleotides that are under little or no purifying selection also varies substantially for
different loci. In this section, we summarize some early experiments that revealed
this variation and then cover some of the new insights into this phenomenon based
on whole-genome sequences. A recent review provides additional insights (45).

The nonsynonymous substitution rate varies over a range comparable to that
seen for amino acid substitutions (reviewed in 135). In keeping with the neu-
tral theory of evolution (94, 95), substitutions occur at a much higher fraction
of synonymous sites than of nonsynonymous sites. However, the proportion of
synonymous sites that have changed (Ks) is not homogeneous. Kg varies roughly
tenfold among different genes compared between the same two species (112).
This is considerably less than the several hundred- to thousand-fold variation in
the proportion of nonsynonymous sites that have changed (K,), but it does not fit
with a homogeneous neutral rate across the genome. Graur (65) pointed out that
synonymous and nonsynonymous substitution rates are significantly correlated.
This was re-examined and confirmed by several authors, including Makalowski &
Boguski (118), who stated, “No satisfactory explanation has been found for this
phenomenon.”

At least part of the explanation lies in variation in the neutral evolutionary rate
in different parts of the genome. Wolfe et al. (186) showed that the synonymous
substitution rate (a model for neutral evolution) varied for different genes, and
it correlated with the base composition of the genes and flanking DNA. They
concluded that the variation in both Kg and base composition could be explained
by systematic differences in the rate and pattern of mutation over regions of the
genome. Other studies showed that conserved synonymous sites are significantly
higher in GC content (the fraction of bases that are guanine or cytosine) than
expected for random substitutions, consistent with a lower substitution rate in
chromosomal regions high in GC content, as reviewed by Bernardi (15). Matassi
et al. (123) showed that the synonymous substitution rate is significantly more
similar for neighboring genes than for randomly chosen genes, strongly arguing
for regional differences in evolutionary rates. The studies summarized here differ
in the extent to which GC content explains the variation.

Variation in evolutionary rates is also observed in comparisons of noncoding
sequences in long genomic DNA segments. Because much of the repetitive DNA
in a species may be lineage-specific, it is useful to measure the fraction of non-
repetitive, noncoding DNA in a locus that aligns between two species. An early
study contrasted the extent of conservation in two loci-encoding proteins with
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virtually identical functions. Comparing human and rabbit genomic sequences,
Hardison et al. (74) showed that intergenic sequences were much less similar in
the HBA gene cluster (encoding alpha-globins) than in the HBB gene cluster (en-
coding beta-globins). As additional long genomic sequences were compared in
species from different mammalian orders (usually human and mouse), it became
clear that some loci have extensive matches outside the coding region (46, 51, 99,
141), some have matches largely limited to the coding region (50, 103), and others
have an intermediate level of noncoding sequence matches (4, 102, 121, 163).
Koop (98) notes that these strikingly different patterns reflect a mosaic structure of
the mammalian genome, with different regions changing at significantly different
rates. Quantitative analysis shows that the fraction of noncoding, nonrepetitive
genomic sequence that aligns between mammalian orders varies at least tenfold
among different loci (40, 50).

COVARIATION IN RATES OF SUBSTITUTION, RECOMBINATION, INSERTION, AND DE-
LETION Not only are the neutral substitution rates variable within genomes, but
they covary with recombination rates and the level of intraspecies polymorphism
(106, 133). The positive correlation between levels of polymorphism and recom-
bination was observed in earlier studies in Drosophila (13) and mammals (e.g.,
174). Comparing several long genomic DNA sequences between human and mouse
showed significant positive correlation between the frequency of insertion (mon-
itored as density of repeated DNA) and divergence as measured by the fraction
of human sequence that does not align with mouse (30). The latter measure is
determined at least partially by the amount of deletion in mouse (132). Studies
of 4.7 Mb of noncoding sequences aligned from human, chimpanzee, and baboon
showed that the local substitution rate covaries positively along the separate hu-
man and chimpanzee branches (166). This revealed that the mutation rate varies
deterministically across primate chromosomes, indicating that factors such as GC
content and compositional nonequilibrium affect the mutation rate. One striking
example of these differences in genomic context is shown in Figure 3, in which
the highly conserved, gene-rich, GC-rich, repeat-poor Class III region of the MHC
is adjacent to the much less conserved, gene-poor, GC-poor, repeat-rich Class 11
region.

This evidence pointed to an association in the rates by which DNA changes
by several processes. One simple explanation for this is that the mutation rate,
or the tendency of the DNA to change, varies regionally. However, studies com-
paring Drosophila species had shown that the rate of between-species divergence
did not correlate with recombination rates, whereas within-species diversity did
correlate (13). This was a strong argument against using variation in the neutral
mutation rate to explain the observed association of diversity and recombination.
Instead, the authors proposed that the association could be explained by genetic
hitchhiking associated with the fixation of advantageous mutants. Alleles linked
to such advantageous mutations would be fixed rapidly in the population, leading
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to lower polymorphism. The lower the recombination rate of a region, the further
this homogenizing effect would extend around the advantageous mutation. Other
studies of the variable amount of divergence in mammalian loci argued that this
reflects different levels of selective constraint exerted over long genomic regions
(162).

The availability of whole-genome alignments between human and mouse pro-
vided the opportunity to examine these issues comprehensively using an unprece-
dented number of likely neutral sites. Most earlier studies used Kg to estimate
the neutral substitution rate, but some studies showed evidence of selection even
on synonymous sites (e.g., 52), and some synonymous sites are parts of splicing
enhancers. Scientists examined two different models of neutral DNA to estimate
the neutral substitution rate (132). Within coding regions, they measured substi-
tutions at fourfold degenerate (4D) sites. They also developed a second, novel
model for neutral DNA. Substitutions in repetitive elements in the human genome
that aligned with their orthologs in mouse (AR sites) were also measured. These
repeats that predate the human-mouse divergence are relics of currently inactive
transposons, and it is likely that most of their nucleotides have no function. As
Ellegren et al. (45) reviewed, neither the 4D nor AR sites are perfect models of
neutral DNA. However, the features that compromise each model are distinct, and
the two models are independent of each other. Thus, as neutral rates are estimated
for each type of sequence within regions of the genome, it is highly unlikely that a
region with some 4D sites that are under selection (e.g., a splice enhancer) would
also have AR sites that are under selection (e.g., as enhancers of transcription; 86).
Both models are present in sufficiently large numbers (about 2 million 4D sites
and 165 million AR sites in the human genome) so that the issues of rate varia-
tion could be examined robustly at high resolution. The estimates of the average
neutral rate computed from 4D and AR sites genome-wide fall within the range of
previous estimates.

The neutral substitution rate estimated from 4D and AR sites varied significantly
across the genome, and the two estimated rates varied together (77, 132). These
neutral rates covaried with the rate of insertion of LTR repeats, with an inferred rate
of deletion in the mouse genome, and with the recombination and polymorphism
rates in the human genome. GC content of the human genome affects these rates in
a complex manner. In regions with low GC content, these rates of DNA change are
negatively correlated with GC content, whereas in regions with high GC content,
the correlation is positive. In these studies, the dependency on GC content is a
confounding variable, which may help explain the differing results from previous
studies that necessarily examined a subset of the genome (15, 59, 123, 186). When
the variation due to GC content is removed from the analysis, the residuals still show
a strong correlation, which argues that the covariation in these rates is influenced
by additional features besides GC content. Although the high divergence of some
genes between human and mouse is associated with the change in GC content
between the orthologs (26), the change in GC content does not explain much of
the rate variation genome-wide (77). Additional studies show that the covariation
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extends to estimates of neutral substitution rates and insertions of most classes of
transposable elements in mouse-rat comparisons and human-rodent comparisons
(187). The only exceptions are the families of SINE repeats, which have a strong
regional preference to insert into GC-rich, more slowly changing DNA.

Examining more closely related species also reveals strong correlations among
recombination, between-species divergence, and within-species diversity (79). Re-
gions with low levels of recombination and diversity in humans also have reduced
divergence in chimpanzee-baboon comparisons. Thus, mutation is associated sta-
tistically with recombination in humans, in accord with other studies (106). Im-
portantly, at least in humans, the positive correlation between diversity and recom-
bination may have a purely neutral explanation.

Chromosomes in C. elegans also show regional variation in the rates of evo-
lutionary change (25, 167). The arms of the chromosomes have higher rates of
recombination, more insertions of repetitive elements, and more breaks in con-
served synteny (with respect to C. briggsae) than do the central regions. Sequence
comparisons with C. briggsae show that genes in the arms also show a higher
Ka/Kg ratio and a higher K, value compared to the central regions. The Ks value
is quite high (much higher than in mammalian comparisons) and shows marked lo-
cal variability, making it difficult to assess whether this measure of the neutral rate
is higher in the arms than in the centers of chromosomes. The central, more slowly
changing regions of the worm chromosomes are enriched in genes with single
orthologs in the comparison species and in genes that when mutated have a lethal
phenotype (25). The arms of C. elegans chromosomes are evolving more rapidly
than the central portions, consistent with the regional differences in evolutionary
rates seen in mammalian chromosome comparisons. The essential, more highly
conserved genes reside in the more stable central region, whereas genes without
clear orthologs, i.e., those subject to more active “‘evolutionary experimentation,”
are more prevalent in the chromosome arms (167).

It is not clear why these studies within primates (79), between primates and
rodents (77, 132), and between worm species (167) show correlations between
recombination and divergence, whereas the earlier comparisons of Drosophila
species do not (13). The availability of more comparison genomes will allow
scientists to examine these correlations in various species to see which apply
broadly and which are found only in some taxa.

In summary, different regions of mammalian genomes show substantial covari-
ation in their inherent tendency to change by a variety of processes. This is true
for the rates of nucleotide substitution (both within and between species), recom-
bination, and insertion of all classes of transposable elements except SINEs. The
GC content only partially explains the variation.

The factors explaining the rate variation need further study. For example,
recombination (106) and initiation of replication (58) appear to be mutagenic,
and these processes may be more frequent in the more rapidly changing re-
gions. Perhaps the regional differences in evolutionary rates correspond to a long-
distance organization of the genome. For example, housekeeping genes tend to be



34

MILLER ET AL.

clustered in the human genome, and these genes tend to be more highly expressed
(107). Over evolutionary time, as recombination tests many alternative locations
for genes, it may be favorable for the housekeeping genes to be retained in more
slowly changing regions. This type of process has been invoked to explain the
tantalizing observation that particular classes of genes tend to be in fast-changing
versus slowly changing regions of the human genome (31). It is reminiscent of the
preferential localization on worm chromosomes of essential genes to the slowly
changing central portions and less essential genes to the more rapidly changing
arms (167). This model differs from those that maintain that selection is acting on
all the DNA in slowly changing regions (162). One interpretation of the regional
preference for particular classes of genes is that some regions are inherently slow
to change, and it is advantageous for some types of genes to be in those regions.

The variation in evolutionary rates has a practical impact on functional ge-
nomics. As discussed above, it is critical to know in what type of segment a
gene resides to understand how to correlate some observable parameters (such as
level of conservation) with function. Also, problems arise because orthologous
sequences from neutral regions are sometimes beyond the threshold for reliable
alignment among distant mammals. If the alignment method attempts to avoid
aligning regions that do not match well, using ancient repeats biases the study to-
ward slow-evolving regions. Similarly, a study of neutral rates between mouse and
rat made in regions that do not align with human will be biased toward fast-evolving
segments. Another concern is that insofar as alignments include nonorthologous
genomic positions, evolutionary rates will tend toward overestimation.

MUTATION RATE DIFFERENCES BETWEEN SEX CHROMOSOMES AND AUTOSOMES One
manifestation of the variation in mutation rate within a mammalian genome is the
difference in rates between autosomes and sex chromosomes and between the two
sex chromosomes due to male mutation bias. This observation can be employed to
test whether mutations result from errors in DNA replication. Males undergo more
germline cell divisions than do females. Thus, if mutations are replication-driven,
one expects to observe the highest mutation rate at a male-specific chromosome
(Y), an intermediate rate at autosomes, and the lowest rate at X, because it spends
most of its time in females (reviewed in 113). Whole-genome comparisons allows
us to investigate the phenomenon of male-mutation bias on a large scale, so that
mutation rates can be estimated from many loci, compensating for the effects of
local (within-chromosome) variation. A comparative analysis of the human and
mouse genomes indicates a lower substitution rate on chromosome X as compared
to autosomes (132). However, the number of germline cell divisions is different
between human and mouse, which prevents a direct test of the hypothesis about
the role of replication errors in mutagenesis. The availability of the rat genome se-
quence provided the opportunity to rigorously test this hypothesis because mouse
and rat are similar in generation time and in the number of germline cell divisions.
Recently, mouse-rat mutation rates were compared between chromosome X and
autosomes (119, 148). There was an approximately twofold excess of nucleotide
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substitutions originating in males over that in females, which confirmed earlier
studies. Unexpectedly, small indels in rodents appear to be male-biased as well;
the male-to-female indel rate ratio is ~2.3. This contrasts with the recent evolu-
tionary study in primates (based on a substantially smaller data set) that indicated
no sex bias in small indels (172). Thus, both small indels and nucleotide substitu-
tions originate twice as frequently in male than in female rodents. The ratio in the
number of cell divisions between the male and female germlines in mouse and rat
is also ~2. This suggests that both small indels and nucleotide substitutions occur
primarily during DNA replication.

Nonuniformity of Evolution Along the Branches of Phylogeny

Whole-genome comparisons provide a conclusive test of the molecular clock hy-
pothesis, which postulates that the rate of evolution is approximately constant over
time in all evolutionary lineages (192). It is now apparent that a global molecular
clock does not exist, but rather the rates of neutral evolution are not always uniform
along branches of the phylogenetic tree.

Comparing genomic sequences confirmed earlier observations inconsistent with
a global molecular clock. For instance, lower rates in primates than in rodents
were inferred from DNA hybridization data (97) and later from analyses of gene
sequences (e.g., 97, 111). In contrast, other studies argued that the rate did not differ
between the two lineages (e.g., 43). A comparison of median divergences of AR
sites between mouse and human indicates a twofold-higher nucleotide substitution
rate in the mouse lineage than in the human lineage (132), in agreement with an
earlier estimate (111). This result was corroborated by comparing the AR sites
among human, mouse, and dog (96). Although the rates in the dog and human
lineages are similar (0.189 and 0.167 substitutions per site, respectively), the mouse
lineage exhibits a noticeable rate increase (0.375 substitutions per site). Analysis
of AR sites in human, mouse, and rat shows a threefold-faster rate on the rodent
lineage than on the primate lineage for the rate of substitutions at likely neutral
sites (148).

Accumulating sequence data provide an opportunity to reexamine the hominoid-
slowdown hypothesis. Based on immunological data and protein sequence data,
Goodman (61) and Goodman et al. (62) proposed that the rate of molecular evo-
lution has slowed in hominoids (humans and apes) after separating from the Old
World monkeys. Sarich & Wilson (156) later challenged this conclusion. However,
alarge-scale comparison of noncoding sequences available for primates (188) pro-
vides convincing evidence supporting the original hominoid-slowdown hypothesis
and shows that the rate in the Old World monkey lineage is ~33% faster than in
the human lineage.

Deviations from a global molecular clock are emerging in other species besides
mammals. For instance, a comparative analysis of four yeast genomes (S. cere-
visiae, S. paradoxus, and S. mikatae with S. bayanus as an outgroup) shows that
the substitution rate is similar in the S. cerevisiae and S. mikatae lineages, but is
~67% lower in the S. paradoxus lineage (90).
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Additional Caveat About Whole-Genome Alignments

The art and science of genome alignments are still in an exploratory period. Avail-
able alignments of vertebrate genomes are computed by significantly different
pipelines (21, 36, 160). The basic approach of each pipeline is similar: A rapid
search for similar regions is followed by extensions of these initial hits. However,
the details of implementation are complex and different among the pipelines. Each
program has a number of adjustable parameters that affect output. For instance,
gaps within an alignment are penalized by amounts that can be adjusted, and cor-
rect settings are poorly understood. Each program has a gap-penalty tuning knob
that is set by guesswork, which influences the trade-off between percentage of
mismatches on one hand, and the frequency and size distribution of gaps on the
other. Hence, it is not easy to predict differences in behavior of the pipelines,
and the results of the different whole-genome alignments have not been compared
and evaluated objectively. This should not discourage investigators from using the
alignments, but users must realize that results may depend significantly on the
details of how the alignments were produced.

LEARNING MORE FROM EXISTING DATA

Individual investigators have many options for using the available wealth of genome
sequence data to answer questions that interest them. Here are some suggestions
for how to proceed.

Choice of Species

It is often difficult to predict which pair of species will permit functional regions
of a desired type to stand out in an interspecies comparison, as illustrated by the
alpha and beta cardiac myosin heavy chain genes (129). The balance between
heart rate and energy consumption in small mammals favors a preponderance
of the alpha form in their ventricles, whereas large animals do better with beta.
Consequently, the expression pattern in humans is closer to that of pigs, for in-
stance, than that of mice (149). This suggests that a human-pig comparison might
be better than human-mouse for locating segments that regulate expression of
these genes. However, the two genes lie head-to-head in a slowly evolving re-
gion, suggesting that two mammals may be too similar for optimal separation of
functional from nonfunctional segments. When combined, the two criteria may
suggest that the human sequence be compared with sequence from a large bird or
reptile.

A combination of slow neutral evolutionary rate and fast evolution of the func-
tion of interest may mean that no single pair of aligned genomic sequences is
adequate to inform investigators about conservation and functional inferences.
A solution is to align sequences from many species at a range of phylogenetic
distances (Figure 2). Genome sequences from more mammalian species such as
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rat (148) are or will be available in the near future. It is likely that multiple com-
parison genomes will be sequenced for other vertebrates (e.g., birds and fish) and
insects.

A pilot study of genomic sequences from 12 species, each orthologous to a
human 1.8-Mb region including CFTR, illustrates the power of the additional se-
quences (175). For example, measures of conservation based on multiple aligned
sequences had much greater power to detect highly conserved noncoding sequences
compared to the measures based on pairwise human-mouse comparisons. An ex-
ample of the high resolution of an alignment score derived from the multiple aligned
sequences is the phyloHMMcons track (164) illustrated in Figure 3A. No pair of
sequences resolved the likely functional sequences as well as larger combinations
of sequences, and one of the most effective combinations was the set of sequences
from nonprimate mammals plus human. Critical insights into phylogenetic history
can be gleaned from examining recent and ancient transposable elements, e.g.,
confirming that rodents and primates are sister groups, despite the large amount of
sequence divergence between them. Also, aligning multiple species at appropriate
evolutionary distances provides information about the direction of the sequence
alterations; the types of nucleotide substitutions can be resolved and insertions
can be distinguished from deletions. Much more detailed analyses of the rates of
evolutionary processes are possible with the multiple alignments. Over the next
few years, we expect this to be a very active area as more genome sequences are
determined.

Choice of Tools

BROWSERS Genome browsers have become essential tools of molecular and ge-
netic research in the life sciences. Although only a few years old, they have become
so widely used that itis difficult to imagine research or teaching without them. They
quickly and easily provide organized views of extensive biological information.
Excellent browsers and databases are available for almost all model organisms;
early examples include the Saccharomyces database and Flybase. We comment
mainly on the browsers for mammalian genomes and some related servers (Ta-
ble 1). The resources available change rapidly; the current description is for the
end of 2003.

Browsers are Internet-based tools that provide integrative views of extensive
annotation of genes or genomic regions. The user controls the types and level of
detail of annotation, and the interval displayed can range from an entire chro-
mosome to a few nucleotides. Three major browsers provide a wide variety of
annotation; they are the UCSC Genome Browser (87, 93), the Ensembl browser
(32, 82), and the MapViewer at NCBI (180, 181). Figure 3 gives images from
two of these. Typically, they present a diagram illustrating genetic markers, known
genes and genes predicted by various pipelines, exon-intron structure and direc-
tion of transcription, mRNAs and ESTs, CpG islands, and repetitive elements.
Users can select among the several types of gene predictions or distinguish known
full-length mRNAs from ESTs and spliced ESTs. Other tracks common to all the
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browsers include information on the depth of coverage of the genome assembly
for aregion, clones that are sequenced, and positions of gaps in the assembly. Data
supporting the browsers are housed in large databases, and the browser serves as
a portal to view information on a single genomic interval. The browsers support
bulk data downloads as well.

Despite these substantial similarities among the browsers, the methods of dis-
playing the data differ substantially (Figure 3), and some information is present
on one browser but not on others. A preference based on method of display is
largely a matter of personal taste, but there are some differences among the major
browsers that can be objectively distinguished. The Ensembl project has one of the
most sophisticated gene prediction pipelines, and it applies this same pipeline to all
genomes analyzed (82). The Ensembl viewer and supporting annotation are simi-
larly gene-oriented, whereas the UCSC Browser and NCBI MapViewer are more
oriented to chromosome intervals. The Ensembl display in Figure 3B includes con-
siderable information about proteins. A server at UCSC, the Gene Family Browser,
finds groups of proteins or genes related by protein-level homology, similarity of
gene expression profiles, or proximity along the genomic DNA.

Comparative genomics information differs significantly between Ensembl and
the UCSC Genome Browser. The genome comparisons at Ensembl are generated
by a pipeline that tends to bring out sequence matches in and around genes, whereas
programs that are more sensitive in noncoding and intergenic regions generate the
comparative genomics data at the UCSC Browser. This is illustrated by a compari-
son of panels A and B in Figure 3. The gene-oriented alignments in Ensembl (Figure
3B) are only seen in the Class [Il region, which is the left part of the display, whereas
the UCSC Browser (Figure 3A) also shows some alignments in the Class II re-
gion, which is the right part of the display. Also, the UCSC Browser currently has a
greater variety of comparative genomics information. Tracks available at the UCSC
Browser include not only alignment information, but analyses of the alignments
such as the phyloHMMcons track (Figure 3A4), which plots the posterior probability
that an aligned sequence is among the most slowly changing regions (164).

Other distinctions among the major browsers are choices about which data
to include. For example, as of this writing, both the UCSC Browser and Ensembl
provide access to the large data set of microarray expression data generated by GNF
(171), whereas MapViewer does not. In contrast, MapViewer is unique among the
three in having SAGE tag information. Another distinctive feature is the ability to
view user-generated tracks, which the UCSC Browser and Ensembl support (albeit
in different formats).

Other browsers are designed for one major purpose, e.g., to show the results
of whole-genome alignments. For example, the Berkeley whole-genome align-
ment pipeline (36) finds anchors of conserved synteny between the two genomes
compared (e.g., human and mouse) using the rapid local aligner BLAT (91), and
then it computes global alignments within these blocks of conserved synteny us-
ing AVID (19). The pipeline was modified for multiple species, with the multiple
alignment constructed using a combination global and local aligner MLAGAN
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(21). The VISTA server displays the results of the alignments and their analy-
sis (36). Results of MAVID alignments of human, mouse, and rat genomes are
accessible via the K-BROWSER (Table 1). The CORG (Comparative Regulatory
Genomics) server finds conserved noncoding blocks upstream of orthologous gene
pairs among human, mouse, rat, and Fugu (41).

GENOME DATABASES The browsers provide detailed views of single genome in-
tervals. For deeper data mining, e.g., examining many loci at once, users need to
query on the supporting data. The browsers provide some query capacity, such as
Table View at the UCSC Browser (88). NCBI’s Entrez system is a text-based search
and retrieval system that accesses genome data plus information in many databases
(158). Also, users can download bulk data and develop their own databases. How-
ever, less computationally inclined users can access the two online databases of
genome information.

GALA is a database of genome alignments and annotation (60). It provides
access to information on genes (known and predicted), gene functions, gene on-
tology (8), expression patterns, genome landscape (such as repetitive elements),
genome alignments and various analyses of these alignments (emphasizing esti-
mates of likelihood of selection and regulatory potential), and conserved transcrip-
tion factor binding sites predicted by TRANSFAC weight matrices (185). The data
are imported from various sources, including the UCSC Genome Browser and
LocusLink at NCBI (147, 180). All data are entered as chromosomal intervals,
with new builds for GALA for each species (currently human, mouse, and rat)
and each new assembly. The schema consists of many tables of relational data, all
referencing chromosomal intervals.

The initial query page supports simple queries to GALA, and the results can
be combined in many ways on a history page. GALA also supports proximity
and clustering in addition to typical operations such as union and subtraction.
It can make intersections in different ways depending on the desired outcome.
Results can be viewed as specialized tracks on the UCSC Genome Browser in an
interactive online alignment viewer (184) or as tables of results. Histograms of
results can also be plotted online. An example of a complex query supported by
GALA is finding, in the vicinity of a set of genes expressed in a particular tissue,
all the predicted binding sites for one or more transcription factors of interest that
are both conserved in mammals and are also in a region with a high likelihood of
being a regulatory element. This result could be obtained in five steps: three simple
queries on expression pattern, the selected conserved transcription factor binding
sites, and regulatory potential score, and two operations to join the results in the
desired manner (e.g., intersection or proximity). Results from this query serve as
predicted or hypothesized regulatory elements that the user can test experimentally.

EnsMart (89) is a branch of the Ensembl project that allows users to retrieve lists
of biological objects, such as genes or single nucleotide polymorphisms (SNPs).
Users can mine the data about genes, gene function, gene expression, and disease to
find new insights and formulate hypotheses. EnsMart integrates data from Ensembl
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and several other resources. It creates a generic data system from the various data
sources, transforming the data from the primary sources into the EnsMart database.
The organization of the EnsMart database differs from that of GALA. EnsMart
follows a “warehouse star-schema” with central biological objects (e.g., genes or
SNPs) connected to a set of satellite tables, such as disease, transcript, and Protein
FAMily (PFAM) attributes. Users navigate EnsMart in three steps: (a) selecting the
species and focus (e.g., genes), () filtering the selection (e.g., genes) with specified
features, and (c) outputting the data set with user-selected attributes. The output
is a table of the results, for which users can specify any of a variety of formats.

The differences between GALA and EnsMart mimic some of the differences
between the UCSC and the Ensembl browsers. One major difference is the depth
of use of comparative genomic data. GALA was developed primarily as a way to
access the various whole-genome alignments and scores that measure properties
of the alignments (e.g., quality that indicates likelihood of selection, similarity
of patterns to those in known functional regions) and extensive annotation. The
breadth of genome coverage by alignments and the depth of analysis of those
alignments are greater in the data accessible through GALA. Much of the data, and
all the comparative genomics data, are available as tracks on the UCSC Browser,
and one effective way to view the query results is on the UCSC Browser.

In contrast, EnsMart was developed with the Ensembl data and data from exter-
nal sources. The object-based organization of EnsMart fits with the gene-centric
views of the Ensembl browser. Thus, EnsMart provides users with fast and effective
access to deep data in and around genes.

These genome-wide databases change rapidly both in their internal implemen-
tation and in the data sets recorded, as with genome browsers. Both have been
public for only a short time, but both are changing quickly. The issue of how much
the two databases overlap in the services offered and how much is distinctive to
each is hard to answer, and the accuracy of any answer is transient. This makes
evaluating performance even more difficult than usual (see below). Researchers
who avail themselves of these resources should find both to be portals into a wealth
of useful information.

DOWNLOADS OF SEQUENCE DATA AND ANNOTATIONS Query interfaces to data-
bases reflect the types of issues that some set of users brought to the design-
ers. There will be other issues that are difficult or impossible to address within the
designed query system. In those cases, researchers will want to download data in
bulk to their own customized databases for further analysis. The UCSC Browser,
Ensembl, EnsMart, NCBI, and GALA support downloads of all data unless the
original source placed limits on data distribution.

ALIGNMENT SERVERS FOR SIMILAR SPECIES Online servers that align two or more
sequences from related species have been available for several years. The BLAST
suite of tools (2, 3), implemented at NCBI, is the most frequently used aligner in the
life sciences. One tool, BLAST2Sequences, rapidly aligns two sequences, but the
length of the sequences is limited and the sensitivity is not high. Thus, servers were
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specially designed to align two or more long genomic sequences at high sensitivity
while detecting common rearrangements such as duplications. Servers computing
local alignments are PipMaker (161), MultiPipMaker (159), and zPicture (142).
Those computing global alignments are VISTA (125) and MAVID (20). The the-
oretical and practical similarities and differences in these servers were recently
reviewed (57). In principle, local alignments should be better able to find similar
sequences despite rearrangements, and they can easily use draft, fragmented se-
quences as input, whereas global aligners should be more sensitive within regions
of conserved gene order and orientation. However, the servers are designed to min-
imize these theoretical limitations. As is often the case for resources that overlap in
the services offered (see below), no objective third party has evaluated the perfor-
mance of these alignment servers. In situations where new alignments are needed,
users will likely find all alignment types useful and possibly complementary.

The entire human, mouse, and rat genomes were aligned using the software that
powers the servers listed above. For many loci and many comparisons, users can
access the desired alignments from the genome browsers and databases. However,
if users want to find matches to any sequence that is not in the genome assemblies,
they can use the alignment servers. For example, experimental work on a particular
locus may be done in a model organism whose genome is not being sequenced.
Researchers may have sequence data on that locus from this special organism and
want to add it to the comparative data from the sequenced model organisms. It
is common for a particular laboratory to have specific information about a gene,
such as the 5" end of an mRNA derived from sequencing 5'-RACE products. The
alignment servers can easily locate these sequences. Also, the alignment portals to
the UCSC Browser, which uses BLAT (91), and to Ensembl, which uses SSAHA
(140), can be used for this task.

Some alignment servers provide additional information that makes them par-
ticularly attractive for a given problem. For instance, seeking candidate CRMs in
highly conserved noncoding sequences is strongly complemented by finding con-
served matches to a transcription factor binding site. This capacity is implemented
inrVista (115). A new server, zPicture (142), computes alignments with BLASTZ
(160) and provides many enhanced features, as Figure 4 illustrates. Sequence input
is greatly facilitated at this server. Designated intervals identified within the UCSC
Genome Browser, annotation of genes and exons, and masking of repeats can be
used as inputs. Displaying the resulting alignments can use either the PipMaker
format (horizontal lines for each ungapped alignment segment) or the smoothed
format implemented in Vista. One innovation of zPicture is the dynamic display of
results so that annotations can be changed and the results seen quickly. Finally, the
results can be output to rVista so that conserved transcription factor binding sites
and conserved regions are visible. Alignment servers with such enhanced features
will become the tools of choice for future analyses.

ALIGNMENT SERVERS FOR DISTANT SPECIES AND PARALOGS The alignment serv-
ers discussed above are tuned for closely related species, such as those from dif-
ferent mammalian orders. To look at more distant species, or to look at paralogs
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generated by ancient duplications (such as those that predate the mammalian radia-
tion and hence are present in both mouse and human), different alignment methods
are needed. One major application of these is to look for common motifs in the
upstream regions of coexpressed genes. Two examples of these approaches are
MEME (11) and Gibbs sampling (157, 176). A survey of these tools is beyond the
scope of this review.

DOWNLOADING ALIGNMENT SOFTWARE The above-mentioned network resources
are sometimes inappropriate for aligning user-supplied sequences, and a user may
prefer to download alignment software and run it locally. One potential justification
is that the amount of sequence may exceed what is feasible for a remote server to
align. Second, the software used by an alignment server typically has capabilities
that cannot be accessed through the server. For instance, the alignment program
may permit arbitrary scores for nucleotide substitutions, whereas the server uses
default scores; for genome sequences at certain evolutionary distances or with
unusual nucleotide content, one may need to change the scores to obtain better
alignments. Third, the user may be unwilling to send the sequence over the Internet.
Finally, a user may believe that the best program for their needs is not available
through a public server.

Alignment servers and genome browsers are natural starting places to look for
genome alignment software. Availability of software and the conditions required
for its use are in a constant state of flux, so we do not attempt to enumerate what is
available here. Likewise, we expect that before press time, many of the available
tools will be significantly improved or even replaced, so we are not attempting an
evaluation. We recommend that once you identify software that seems to suit your
needs, inform the authors of your particular requirements and ask for their advice.
They may be strongly motivated to help you take advantage of their program’s full
capability.

DOWNLOADING WHOLE-GENOME ALIGNMENTS Existing databases readily answer
certain questions about genome-wide phenomena, as described above. However,
one can imagine interesting questions that are difficult to answer completely or
precisely, such as: Is the average percent identity between human and mouse ge-
nomic DNA higher in introns than in intergenic regions? In general, are the 1000 bp
immediately upstream of the transcription start site better conserved for genes with
tissue-specific expression than for ubiquitously expressed genes? How does the
degree of conservation compare for various classes of nontranslated RNA genes?
To answer such questions, it may be feasible to download whole-genome align-
ments that were computed elsewhere, assemble any other necessary information,
and write special-purpose programs that interrogate these data in an appropriate
way. Although the computation of whole-genome alignments may require more
computational resources than are available to a typical investigator, downloading
and analyzing such alignments requires only a good Internet connection and an
inexpensive computer.

Currently, several Internet sites exist that provide access to alignments of en-
tire genomes, and others will appear soon. Some, and probably most, of these
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will permit users to download the entire set of alignments, along with annota-
tions such as gene and exon positions. These can be analyzed for novel pur-
poses using programs that, at least in some cases, are relatively straightforward
to write. For instance, a student with good programming skills should be able
to write a program that reads alignments of the human and mouse genomes,
reads positions of all human RefSeq genes, and determines average levels of sub-
stitutions in alignments of introns and of intergenic regions. The time to write
the program might fall between one day and one week, depending on program-
ming proficiency and luck, whereas running the program on the full set of align-
ments might take one or several hours on a typical workstation. Software to per-
form more complicated analyses of alignments and other data will take longer to
write.

FUTURE OF COMPARATIVE GENOMICS

The next several years will bring many advances in comparative genomics. Genomes
from a wide variety of species covering many taxa will be sequenced. This wide

range of genomes will insure that the methods of comparative genomics will be

applied to basic and complex issues in plant biology, developmental biology, patho-

biology, behavior, and more. It would be presumptuous to speculate on the novel

insights that will be gleaned, but previous experience with the several genomes

sequenced to date makes us confident that many exciting new findings will be

forthcoming.

We expect that the resources for comparative genomics will become even more
user friendly, and that they will become part of the toolkit of virtually every experi-
mental biologist. However, building the bioinformatic infrastructure to realize this
exciting potential will require new developments. We summarize some of them
here.

A small cadre of bioinformatics specialists has taken up the task of building
better tools for producing whole-genome alignments. In parallel, a community
of computationally oriented biologists has coalesced to use those alignments for
various purposes. The two fields are coevolving: better alignment tools engender an
expanded range of successful applications, and new uses for alignments suggest
additions to the toolset. Although neither field has matured to the point that its
trajectory can be reliably forecast in detail, we suggest several general steps to
improve the quality of tools to compare genome sequences, as was previously
attempted (42, 130).

Users of alignment tools and/or precomputed alignments may benefit from
our discussion through a heightened awareness of areas in which current tools
lack maturity. Take-home messages include that the field of genome sequence
comparisons is still in its infancy, and that new tools and ideas should be greeted
with a healthy skepticism. On the bright side, the continuing influx of experts from
related fields will quickly improve the situation, particularly as the following goals
are achieved.
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Precise and Comprehensive Formulations of the
Genome-Comparison Problem

The traditional concept of an alignment is intuitively natural and admits a straight-
forward and precise definition. In fact, many somewhat different definitions are
straightforward, and to even approach the generality needed for whole-genome
comparisons one must go beyond the traditional concept. For example, comparing
genomes might be construed as the problem of computing an “appropriate” set of
objects, each of which is constructed by the following steps: (a) select one or more
genomes; (b) select one contiguous segment from each of the selected genomes;
(c) replace zero or more of the segments by their reverse complement; (d) add
zero or more dash characters to each selected segment so that the resulting padded
segments have the same length; (e) place the padded sequences one over the other
in an array, where each padded sequence forms a row, with one symbol (letter or
dash) per column; and (f) discard all columns that consist entirely of dashes. “Ap-
propriate” might be interpreted as requiring that, for the most part, two sequence
positions are in the same column of an alignment if and only if they are descended
(each by zero or more nucleotide substitutions) from the same position in the most
recent common ancestor of the two species.

Developers and users of whole-genome alignment software have yet to agree
on, or even to discuss in any detail, what it is that the software should attempt to
compute. With maturation of the field of whole-genome sequence comparison, it
becomes both more critical and more feasible to precisely formulate the genome
comparison problem (or problems). Part of the task is to precisely specify the
objects to be computed; early attempts to appropriately generalize the classical
concept of an alignment (17, 78, 104) need improvement. Another part of the task
is to formulate the biological criteria that the computed object should satisfy, i.e.,
to state how to tell if the computed object is accurate.

Alignment Software that Automatically and Accurately
Handles a Wider Spectrum of Evolutionary Operations

The above definition of “alignment” models just a few evolutionary operations,
namely insertions and deletions (both short by adding dashes and long by omitting
species), inversions, and nucleotide substitutions. It is still more inclusive than the
classes of similarities handled by many (probably most) current whole-genome
alignment programs. In particular, it is common for a genome alignment program
to be designed so that it will fail to record many inversions, particularly small
ones. This is unfortunate, given the frequency of inversions within genomic DNA
sequences (92) and the fact that functional regions can be inverted in one species
relative to another. For instance, a 110-bp regulatory region lying over 4 kb down-
stream of the human WNT/ gene (152) can be identified in whole-genome human-
Fugu alignments computed by existing methods, provided the method accounts
for the region’s inversion between those species. Duplication events provide addi-
tional challenges for the would-be builder of whole-genome alignment tools. The
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currently available genome alignment pipelines fall short of accurately handling
inversions and duplications, much less other kinds of rearrangements. Though the
bioinformatics community has been painfully aware of the deficiency for several
years (42), a completely satisfactory solution remains to be found.

Better Tools for Identifying Well-Conserved Regions
within Long Alignments

The mammalian radiation was sufficiently recent such that mammalian genomes
can frequently be aligned in neutrally evolving regions with some confidence. For
example, about 40% of the human genome can be aligned to the mouse, a much
larger fraction than what appears to be under evolutionary constraints (132). A
major potential use for these alignments is to predict the locations of genomic
segments that are functional (i.e., increase evolutionary fitness), hence the goal
of finding the segments that are particularly well conserved within a pre-existing
alignment. Several algorithms have been proposed for this problem (47, 81, 122,
151, 168). However, the problem is deeper than simply providing more methods.
One need is for a system that lets the user readily select from among several
methods, adjust parameters, pick which subset of the given species to consider, and
see the computed regions displayed in the context of rich biological information.
Another is for an objective evaluation of the existing tools, a need common to
many classes of bioinformatics software.

Improved Methods to Evaluate Genome-Alignment Software

The sudden availability of huge amounts of genomic sequence data has fostered a
“gold rush” mentality in a segment of the bioinformatics community, with several
groups seeking the mother lode—an alignment program that will become the de
facto standard for genome comparisons. Serious attempts to evaluate these tools are
frequently left behind in the rush. Such an evaluation project is unlike the mundane
task of setting up a hardware store to serve the gold miners because the job is more
challenging (not to mention more useful to the biology community) than that of
writing yet another alignment program. It is an order of magnitude easier to build
two good genome-alignment programs than to tell which one is better.

One approach to evaluating genome alignment software is to measure the ac-
curacy with which orthologous protein-coding regions are aligned. This has the
advantages that accuracy is measured with respect to an important class of bio-
logically functional regions and that those regions are relatively straightforward
to locate by current experimental means. For DNA-based alignment software, it is
a serious disadvantage that the methods evaluated are not primarily designed for
matching coding regions, a job better done by programs that work with conceptual
translations of the genomic sequence.

A more appropriate strategy is to measure efficacy at correctly matching func-
tional noncoding regions, using naturally occurring DNA sequences and exper-
imentally confirmed functional elements. The approach can apply to programs
that either compute alignments or find well-conserved regions within existing
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alignments (168). Thus, programs are evaluated on a data set that is germane
to their intended purpose. Unfortunately, it is currently difficult to obtain large
data sets of confirmed elements to serve as the “gold standard,” and it is not al-
ways clear how to quantify a program’s success at finding the right answer (55).
It is particularly problematic to experimentally verify that a genomic segment is
completely nonfunctional (in all tissues, developmental stages, and environmental
conditions), which makes it difficult to measure false positives among computa-
tionally predicted functional segments.

Besides predicting the location of functional noncoding segments, a second
major application of genome-comparison programs is to investigate neutral evo-
Iution. In that context, success requires that a large majority of the aligned pairs
of sequence positions are orthologous, meaning the two positions descend from
the same position in the genome of the last common ancestral species, possibly
via nucleotide substitutions. One way to quantify a program’s ability to correctly
align orthologous positions in neutrally evolving DNA is to simulate evolution-
ary processes (17, 169). The basic idea is to start with a hypothetical “ancestral”
sequence and apply a realistic set of synthesized mutational operations and spe-
ciation events, resulting in an artificial set of “modern day” sequences; one then
knows which pairs of sequence positions were obtained from the same ancestral
position, i.e., one knows the correct output.

It is natural for bioinformatics specialists to prefer writing new programs to
testing old ones. The burden may fall on editors and reviewers of biology and
bioinformatics journals to require that published software papers provide com-
pelling evidence of the new programs’ superior performance for an important
class of data. Also, publishing objective software evaluations by groups not heav-
ily invested in any of the programs being evaluated, perhaps along the lines of
Fortna & Gardiner’s (56) recent survey of genome sequence analysis tools, should
be strongly encouraged.

Improved Tools for Linking Alignments to Other
Sequence-Based Information

Experimental data on functional, noncoding genomic regions, such as DNase-
hypersensitive sites, protein-binding, assays and DNA-transfer experiments using
cells or animals, needs to be better integrated with sequence data. A substan-
tial body of data from traditional low- to medium-throughput experiments is in
the published literature but not in databases. A major new initiative, the EN-
CODE project (35), started in the fall of 2003 to identify all functions of the DNA
sequences in targets that cover 1% of the human genome. This initiative will gen-
erate large amounts of high-throughput functional data, and it is stimulating the
development of additional high-throughput methods. The next phase is to apply
the most effective methods to the entire human genome.

Data from the ENCODE project will be a testing ground to develop bioinfor-
matic resources to display the experimental results and to integrate them with other
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sequence-based information. Figure 5 shows an early prototype with a coordinated
view of hypersensitive sites and known regulatory regions with patterns of conser-
vation at the CFTR locus. The DNA segments that have been investigated range
from highly to moderately conserved. Some extremely well-conserved regions that
also have conserved predicted transcription factor binding sites, such as the peak in
the phyloHMMcons track at the far left, are tantalizing segments for experimental
tests by a single investigator. The ENCODE data should include comprehensive
tests of all segments, which will permit a critical evaluation of how well various
measures, or combinations of them, predict function. As the ENCODE data are
recorded and displayed, it will be desirable to harvest the vast amount of functional
data already published and organize it into databases. It is reasonable to expect
substantial advances in this area in the future.

Sequences and sequence alignments will continue to be integrated with func-
tional genomic data in novel ways. One recent advance was the integration of
microarray expression data from several different species guided by orthology
relationships among the genes (170). This meta-analysis led to important new in-
sights and should be considered an early effort in the large-scale integration efforts
to come. Such advances will fuel efforts that lead to novel information and deeper
understanding of biological processes.

The Annual Review of Genomics and Human Genetics is online at
http://genom.annualreviews.org
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Figure 3 Images from the UCSC Browser and Ensembl. A region of 115 kb con-
taining the junction between the Class III and Class II regions of the human major
histocompatibility complex is pictured. The Class III region shows much higher
gene density, GC content (the fraction of bases that are guanine or cytosine), and
interspecies conservation than the Class II region, and a lower density of inter-
spersed repeats. Both the UCSC Browser (panel A) and Ensembl (panel B) illustrate
these features, using different types of icons and displays for identical (e.g., Vega
gene annotation) or highly similar (repetitive elements) data. Some features are dis-
tinctive to each browser, such as the phyl[HMMcons (164) track at UCSC, which
gives an estimate of the likelihood that an aligned sequence is a more slowly chang-
ing region, and the proteins track at Ensembl.
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Figure 4 Use of the zPicture server to compare sequences from human and cat. A region
of about 300 kb containing the beta-like globin gene cluster embedded in a cluster of olfac-
tory receptor (OR) genes is pictured. Panel A shows human-cat conservation and gene
annotations that were automatically extracted from the UCSC Browser. Panel B presents a
dot-plot representation of the alignments (at the same scale as panel A), revealing a tripli-
cation of multiple OR genes in cat. Not all of the OR genes are annotated in the human;
the matrices of short matches in the upper and lower left and right parts of the plot are
matches between OR genes. Red lines are matches in the same orientation; blue is a match
with the reverse complement. The matrix of matches in the center of the plot shows results
from alignments among globin genes. The locus control region (LCR) is strongly con-
served. Panel C shows conservation and predicted GATA1 and NFE2 binding sites that are
conserved between human and cat in the LCR. These correspond to experimentally veri-
fied binding sites in localized segments of the LCR. Panel C was generated by exporting
the alignments to rVista, a function supported by zPicture.
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