Using Galaxy for NGS Analysis

Daniel Blankenberg

Postdoctoral Research Associate The Galaxy Team http://UseGalaxy.org

Overview

NGS Data Galaxy tools for NGS Data Galaxy for Sequencing Facilities

Overview

NGS Data

 Galaxy tools for NGS Data
 Galaxy for Sequencing Facilities

NGS Data

- Raw: Sequencing Reads (FASTQ)
- Derived
 - Alignments against reference genome (SAM/BAM)
 - Annotations
 - GFF
 - BED
 - Genome Assemblies

A Note on FASTQ

Contains Sequence data and quality data

@UNIQUE_SEQ_ID

GATTTGGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT +

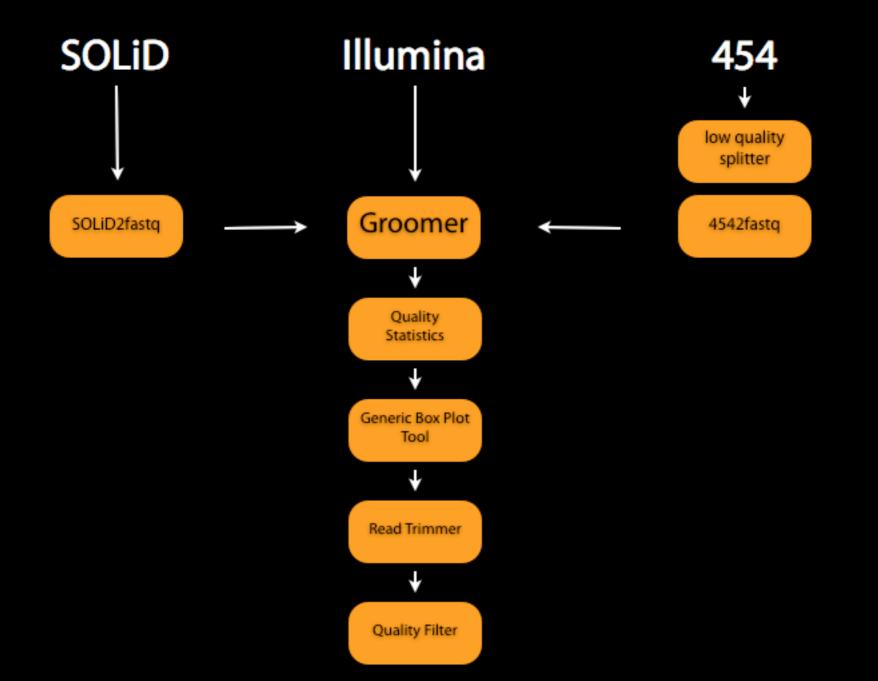
```
! ' ' * ( ( ( ( * * * + ) ) % % % + + ) ( % % % ) . 1 * * * - + * ' ' ) ) * * 55CCF>>>>>CCCCCC65
```

• Several Variants exist

Quality Score Comparison

Diagram adapted from http://en.wikipedia.org/wiki/FASTQ_format

Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 2009 Dec 16.


Overview

NGS Data
Galaxy tools for NGS Data
Galaxy for Sequencing Facilities

Available NGS Analysis Toolsets

- Prepare, Quality Check and Manipulate FASTQ reads
- Mapping
- SAMTools
- SNP & INDEL analysis
- Peak Calling / ChIP-seq
- RNA-seq analysis

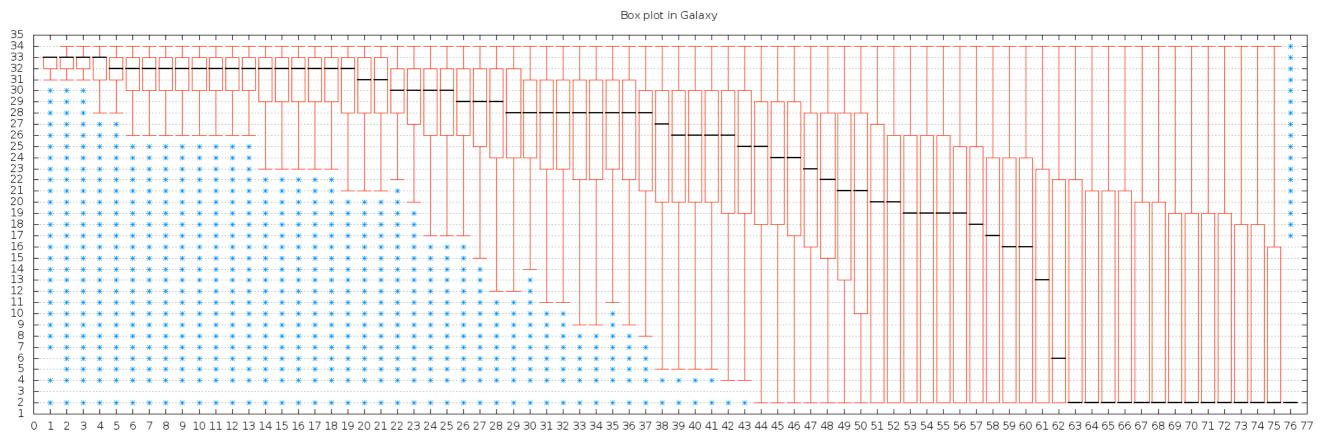
Prepare and Quality Check

Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A; Galaxy Team. Manipulation of FASTQ data with Galaxy. Bioinformatics. 2010 Jul 15;26(14):1783-5.

Combining Sequences and Qualities

- Galaxy	Analyze Data Workflow Shared Data Visualization Admin Help User		
Tools Options	Combine FASTA and QUAL	History Options	
 <u>FASTQ splitter</u> on joined paired end reads <u>FASTQ joiner</u> on paired end reads <u>FASTQ Summary Statistics</u> by column <u>ROCHE-454 DATA</u> <u>Build base quality distribution</u> <u>Select high quality segments</u> <u>Combine FASTA and QUAL</u> into FASTQ 	FASTA File: 1: 454.fasta ‡ Quality Score File: 2: 454.qual ‡ Force Quality Score encoding: ASCII Execute	Combine QUAL and Sequence 2: 454.qual Image: Combine QUAL and Sequence 2: 454.qual Image: Combine QUAL and Sequence 52 lines format: qual454, database: ? Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL and Sequence Info: uploaded qual454 file Image: Combine QUAL a	
AB-SOLID DATA	This tool joins a FASTA file to a Quality Score file, creating a single FASTQ block for each read. Specifying a set of quality scores is optional; when not provided, the output will be fastqsanger or fastqcssanger (when a csfasta is provided) with each quality score being the maximal allowed value (93). Use this tool, for example, to convert 454-type output to FASTQ.	12 9 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	
GENERIC FASTC MANIPULATION@EYKX4VC01B65GS 1 CCGGTATCCGGGTGCCG # B8C:===A8C<%==@6= @EYKX4VC01BNCSP 1 SUBC:===A8C<%==@6= @EYKX4VC01BNCSP 1 CTTACCGGTCACCACCG # CD;:F=F=:= <e<=e<= </e<=e<= @EYKX4VC01CD9FT 1 GGGGGCTTTGGCCTGTC # D91*# <hb.e<e<=== </hb.e<e<=== @EYKX4VC01B8FW0 1	<pre>ength=54 xy=0784_1754 region=1 run=R_2007_11_07_16_15_57_ PTGATGAGCGCCACCGGAACGAATTCGACTATGCCGAA <<=====B8=B9E<&6==B;B9<====A8=C: ength=187 xy=0558_3831 region=1 run=R_2007_11_07_16_15_57_ PTGCCTTCAGGATTGATCGCCAGATCGGTCGGTGCGTCAGGCGGGGGTGACATCGCCCACCACGGTACTCACTGGCTGG</pre>	EYKX4VC01B65GS length=54 xy=0784_1 CCGGTATCCGGGTGCCGTGATGAGCGCCACCGGAA >EYKX4VC01BNCSP length=187 xy=0558_ CTTACCGGTCACCACCGTGCCTTCAGGATTGATCG GGTGACATCGCCCACCGGTACTCACTGGCTGGC CACCACGTTGAGGGTATTCCCCTCGGTTTGTGGCT	
+ =IC0D=' <b8c9a7==== @EYKX4VC01BCGYW 1 GGCCAGCCGGGACAGCG + =';0<=F=JD2=6=86< @EYKX4VC01AZXC6 1</b8c9a7==== 	CAAATCAGGGTCGTGTGTTTAGACTTCGGCTTTAGAGACCTGAATACGTCAAAAACATAACTTCATGATATCTTGCAGT DJC2===F?*====<=P?)==<=D; <d;=f?*=<===c:==a7;====<le8-"=6=<1=a8<=<===a7=;;<= ength=115 xy=0434_3926 region=1 run=R_2007_11_07_16_15_57_ CTTGTTGGGCTGCATGGCGACGAGGCTAAAAGTCGCCATCACCGCCCGC</d;=f?*=<===c:==a7;====<le8-"=6=<1=a8<=<===a7=;;<= 		

Grooming --> Sanger


💳 Galaxy	Analyze Data Workflow Shared Dat	ta Visualization Admin Help User	
Tools Options 👻	FASTQ Groomer		History Options -
NGS TOOLBOX BETA NGS: QC and manipulation ILLUMINA DATA FASTQ Groomer convert between various FASTQ quality formats FASTQ splitter on joined paired end reads FASTQ joiner on paired end reads FASTQ Summary Statistics by column ROCHE-454 DATA Build base quality distribution Select high quality segments Combine FASTA and QUAL into FASTQ AB-SOLID DATA Convert SOLID output to fastq Compute quality statistics for SOLID data Draw quality score boxplot for	File to groom: 3: Combine FASTA and and data 2 Input FASTQ quality scores type: Sanger Solexa Illumina 1.3+ Sanger Color Space Sanger Execute What it does This tool offers several conversions options relating to the FA When using Basic options, the output will be sanger formatter Sanger). When converting, if a quality score falls outside of the target the minimum or maximum). When converting between Solexa and the other formats, qual the equations found in Cock PJ, Fields CJ, Goto N, Heuer ML, quality scores, and the Solexa/Illumina FASTQ variants. Nucleic When converting between color space (csSanger) and base/se are lost or gained; if gained, the base 'G' is used as the adapt is no adapter present in the color space sequence. Any maske 'N's when determining color space encoding.	<pre></pre>	Combine QUAL and Sequence 3: Combine FASTA and Combine FASTA and Combine GUAL and data 2 3: Combine FASTA and Combined 1 and data 2 18 sequences format: fastqsanger, database: ? Info: Combined 18 of 18 sequences with quality scores (100.00%). Combined 18 of 18 sequences (100.00%). Combined 18 of 18 sequences (100.00%).
SOLID data GENERIC FASTQ Quality Sc	ore Comparison		>EYKX4VC01BNCSP length=187 xy=0558_ 27 35 26 25 37 28 37 28 25 28 27 36
I"#\$%&'()* 33 S - Sanger I - Illumin X - Solexa		to 40 expected in raw reads)	x ~

Quality Statistics and Box Plot Tool

Graph/Display Data

- <u>Histogram</u> of a numeric column
- <u>Scatterplot</u> of two numeric columns
- <u>Plotting tool</u> for multiple series and graph types
- <u>Boxplot</u> of quality statistics

Nucleotide Position

NGS TOOLBOX BETA

NGS: QC and manipulation

ILLUMINA DATA

- <u>FASTQ Groomer</u> convert between various FASTQ quality formats
- <u>FASTQ splitter</u> on joined paired end reads
- <u>FASTQ joiner</u> on paired end reads
- <u>FASTQ Summary Statistics</u> by column

Score Value

Read Trimming

🗧 Galaxy	Analyze Data Workflow S	hared Data Visualization Admin Help User
Tools Options v		6
GENERIC FASTQ MANIPULATION Filter FASTQ reads by quality score and length	FASTQ Trimmer FASTQ File: 2: imported: GM12878ple Dataset Define Base Offsets as:	
FASTQ Trimmer by column	Absolute Values 🗘	FASTQ Quality Trimmer
 <u>FASTQ Quality Trimmer</u> by sliding window 	Use Absolute for fixed length reads (Illumina, SOL Use Percentage for variable length reads (Roche/4	15
FASTQ Masker by quality score	Offset from 5' end:	FASTQ File: 7: FASTQ Trimmer on data 2
 Manipulate FASTQ reads on various attributes 	0 Values start at 0, increasing from the left	Keep reads with zero length:
 FASTQ to FASTA converter 	Offset from 3' end:	
FASTQ to Tabular converter	4 16	Trim ends:
Tabular to FASTQ converter	Values start at 0, increasing from the right	Window size:
FASTX-TOOLKIT FOR FASTQ DATA	Keep reads with zero length:	1
 <u>Quality format converter</u> (ASCII– Numeric) 	Execute	Step Size: 1
 <u>Compute quality statistics</u> 	This tool allows you to trim the ends of reads.	Maximum number of bases to exclude from the window during agg
 Draw quality score boxplot 	You can specify either absolute or percent-based of	
 Draw nucleotides distribution chart 	For example, if you have a read of length 36:	Aggregate action for window:
FASTQ to FASTA converter	@Some FASTQ Sanger Read	
Filter by quality	CAATATGTNCTCACTGATAAGTGGATATNAGCNCCA + =@@.@;B-%?8>CBA@>7@7BBCA4-48%<;;% <b@< td=""><td>Trim until aggregate score is:</td></b@<>	Trim until aggregate score is:
Remove sequencing artifacts	And you get absolute offsets of 2 and 0:	
		Quality Score: 0.0

Execute

Quality Filtering

Filter FASTQ

FASTQ File:

7: FASTQ Trimmer on data 2	\$
----------------------------	----

Requires groomed data: if your data does not appear here try using the FASTQ groomer.

Minimum Size:

L	n	
Ľ	υ	

Maximum Size:

0		
υ		

A maximum size less than 1 indicates no limit.

Minimum Quality:

l o		n	
v	•	v	

Maximum Quality:

0	0	
υ	υ	

A maximum quality less than 1 indicates no limit.

Maximum number of bases allowed outside of quality rang

0	
υ	

This is paired end data:

Quality Filter on a Range of Bases


Add new Quality Filter on a Range of Bases

Execute

Quality Filter on a Range of Bases

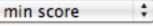
Quality Filter on a Range of Bases 1

Define Base Offsets as:

Use Absolute for fixed length reads (Illumina, SOLiD) Use Percentage for variable length reads (Roche/454)

+

Offset from 5' end:


Values start at 0, increasing from the left

Offset from 3' end:

0	
•	

Values start at 0, increasing from the right

Aggregate read score for specified range:

Keep read when aggregate score is:

Quality Score:

0.0

Remove Quality Filter on a Range of Bases 1

Add new Quality Filter on a Range of Bases

Execute

Manipulate FASTQ

Manipulate FASTQ

FASTO File:

Manipulate FASTQ

FASTQ File:

7: FASTQ Trimmer on data 2

Requires groomed data: if your data does not appear here try using the FASTQ groomer.

Match Reads

Add new Match Reads

Manipulate Reads

Add new Manipulate Reads

Execute

Remove reads with N's?

7: FASTQ Trimmer on data 2
Requires groomed data: if your data does not
appear here try using the FASTQ groomer.
Match Reads
Match Reads 1
Match Reads by:
Sequence Content 🛟
Sequence Match Type:
Regular Expression 💲
Match by:
Ν
Remove Match Reads 1
Add new Match Reads
Manipulate Reads
Add new Manipulate Reads
Execute

Manipulate FASTQ

FASTQ File: + 7: FASTQ Trimmer on data 2 Requires groomed data: if your data does not appear here try using the FASTQ groomer. Match Reads Match Reads 1 Match Reads by: Sequence Content + Sequence Match Type: Regular Expression 💲 Match by: N Remove Match Reads 1 Add new Match Reads Manipulate Reads Manipulate Reads 1 Manipulate Reads on: Miscellaneous Actions 🛟 Miscellaneous Manipulation Type: Remove Read \$ Remove Manipulate Reads 1

Add new Manipulate Reads

Execute

Available NGS Analysis Toolsets

- Prepare, Quality Check and Manipulate FASTQ reads
- Mapping
- SAMTools
- SNP & INDEL analysis
- Peak Calling / ChIP-seq
- RNA-seq analysis

Mapping NGS Data

- Collection of interchangeable mappers
- Accept FASTQ Format
- Create SAM/BAM Format
 - SAMTools*
- Algorithms for
 - DNA
 - RNA

• Local Re-alignment

Mappers

- Short Reads
 - Bowtie
 - BWA
 - BFAST
 - PerM
- Longer Reads
 - LASTZ
- Metagenomics
 - Megablast
- RNA
 - Tophat

Lastz
Align sequencing reads in:
Against reference sequences that are:
Using reference genome:
Aedes aegypti: AaegL1
If your genome of interest is not listed, contact the Galaxy team
Output format:
Lastz settings to use: Commonly used For most mapping needs use Commonly used settings. If you want full control use Full List
Select mapping mode:
Roche-454 98% identity 🗘
Roche-454 98% identity Roche-454 95% identity Roche-454 90% identity Roche-454 85% identity Roche-454 75% identity Illumina 95% identity Illumina 85% identityeference name?:
Do not report matches above this identity (%):
100
Do not report matches that cover less than this percentage of each read:
Convert lowercase bases to uppercase:
Yes 🗘
Execute

Lastz

Align sequencing reads in: 53: FASTQ to FASTA on data 7

Against reference sequences that are:

Using reference genome:

Aedes aegypti: AaegL1

+

If your genome of interest is not listed, contact the Galaxy team

Output format:

SAM

Lastz settings to use:

Full Parameter List 🗘

Commonly used use Commonly used settings. If you want full control use Full List

Full Parameter List which strand to search?:

\$

Both

Select seeding settings:

Seed hits require a 19 bp word with matches i 🗧

allows you set word size and number of mismatches

Select transition settings:

Allow one transition in each seed hit

affects the number of allowed transition substitutions

Perform gap-free extension of seed hits to HSPs (high scoring segment pairs)?:

No ‡

Perform chaining of HSPs?:

No 🗘

Gap opening penalty:

400

Gap extension penalty:

30

X-drop threshold:

910

Y-drop threshold:

9370

Set the threshold for HSPs (ungapped extensions scoring lower are discarded):

3000

Set the threshold for gapped alignments (gapped extensions scoring lower are discarded):

3000

Involve entropy when filtering HSPs?:

No 🗘

No ‡

Do you want to modify the reference name?:

- Variable Levels of Settings
 - Default Best-Practices
 - Fully customizable parameters

	Do you want to modify the reference name?:
	Do not report matches below this identity (%):
	Do not report matches above this identity (%):
	Do not report matches that cover less than this percentage of each read:
	Convert lowercase bases to uppercase:
discarded):	Execute
	What it does
g lower are discarded):	LASTZ is a high performance pairwise sequence aligner derived from BLASTZ. It is written by Bob Harris in Webb Miller's laboratory at Penn State University. Special scoring sets were derived to improve runtime performance and quality. This Galaxy version of LASTZ is geared towards aligning short (Illumina/Solexa, AB/SOLiD) and medium (Roche/454) reads against a reference sequence. There is excellent, extensive documentation on LASTZ available <u>here</u> .
	Input formats LASTZ accepts reference and reads in FASTA format. However, because Galaxy supports implicit format conversion the tool will recognize fastq and other method specific formats.

Available NGS Analysis Toolsets

- Prepare, Quality Check and Manipulate FASTQ reads
- Mapping
- SAMTools
- SNP & INDEL analysis
- Peak Calling / ChIP-seq
- RNA-seq analysis

SNPs & INDELS

SNPs from Pileup

Generate

• Filter

dataset

SNPs

bases

Galaxy Analyze Data Workflow Shared Data Visualization Admin Help User Tools Options ablaIndel Analysis NGS: SAM Tools Fetch Alignments Select sam file to analyze: Get Genomic Scores Filter SAM on bitwise flag values 54: BAM-to-SAM on dat..nverted SAM 🛟 Operate on Genomic Intervals Convert SAM to interval Statistics Frequency threshold: Graph/Display Data 0.015 SAM-to-BAM converts SAM Regional Variation Cutoff format to BAM format Multiple regression Execute Multivariate Analysis BAM-to-SAM converts BAM Evolution format to SAM format What it does Metagenomic analyses Human Genome Variation Merge BAM Files merges BAM Given an input sam file, this tool provides analysis of the indels. It filters out matches that do not meet the frequency threshold. The way this frequency of occurence is calculated is different for deletions and insertions. The CIGAR string's "M" EMBOSS files together can indicate an exact match or a mismatch. For SAM containing the following bits of information (assuming the reference "ACTGCTCGAT"): NGS TOOLBOX BETA Generate pileup from BAM CIGAR CHROM POS SEQ NGS: QC and manipulation 2M1I3M TACTTC ref 2M1D3M ACGCT ref NGS: Mapping GTTCAAGAT 4M2I3M ref Filter pileup on coverage and ref 2M2D3M CTCCG NGS: SAM Tools ref 3M1D4M AACCTGG TTCAAT ref 3M112M NGS: Indel Analysis ref 3M1 T 3M CTCTGTT CTAT Filter Indels for SAM ref 4M5M CGCTA ref Pileup-to-Interval condenses 2M1D2M ref TGCC Extract indels from SAM pileup format into ranges of The following totals would be calculated (this is an intermediate step and not output): Indel Analysis NGS: Peak Calling POS BASE NUMREADS DELPROPCALC DELPROP INSPROPSTARTCALC INSSTARTPROP INSPROPENDCALC INSENDPROP flagstat provides simple stats _____ 2/2 1.00 NGS: RNA Analysis 1 A 2 1/3 0.33 on BAM files 2/3 0.67 ------------RGENETICS 3 1/5 0.20 ---------____ 3/5 ---0.60 ---------1/5 0.20 ------------SNP/WGA: Data; Filters 1/6

INDELS

Available NGS Analysis Toolsets

- Prepare, Quality Check and Manipulate FASTQ reads
- Mapping
- SAMTools
- SNP & INDEL analysis
- Peak Calling / ChIP-seq
- RNA-seq analysis

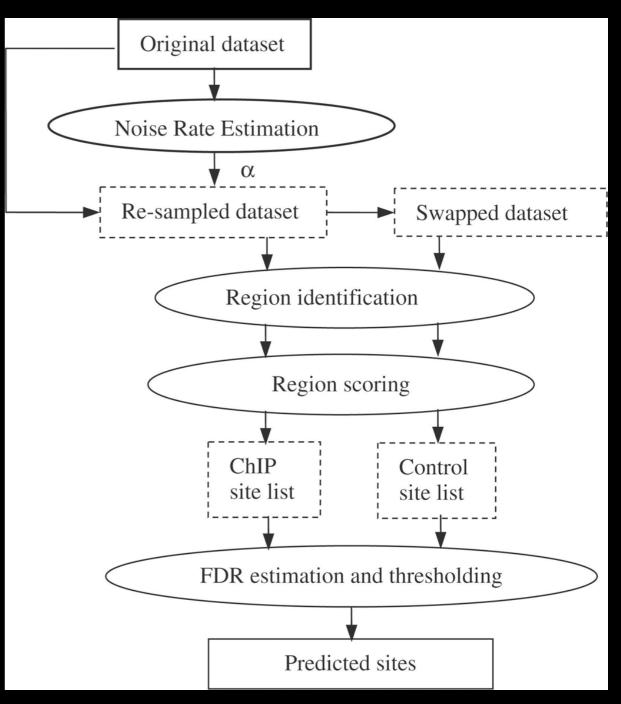
Peak Calling / ChIP-seq analysis

- Punctate Binding
 - Transcription Factors
- Diffuse Binding
 - Histone Modifications
 - Polli

Punctate Binding

Albert I, Wachi S, Jiang C, Pugh BF. GeneTrack--a genomic data processing and visualization framework. Bioinformatics. 2008 May 15;24(10):1305-6. Epub 2008 Apr 3.

MACS


• Inputs

- Enriched Tag file
- Control / Input file (optional)
- Outputs
 - Called Peaks
 - Negative Peaks (when control provided)
 - Shifted Tag counts (wig, convert to bigWig for visualization)

Diffuse Binding

 CCAT (Control-based ChIP-seq Analysis Tool)

ChIP-Seq Tag File: 5: Convert Genomic I6 on data 3 ChIP-Seq Control File: 6: Convert Genomic I6 on data 4 Advanced Options: Hide Advanced Options Select a pre-defined configuration file: CCAT provided Histone Modification CCAT provided Transcription Factor Binding CCAT provided Histone Modification	CCAT
ChIP-Seq Control File: 6: Convert Genomic I6 on data 4 Advanced Options: Hide Advanced Options Select a pre-defined configuration file: CCAT provided Histone Modification CCAT provided Transcription Factor Binding	ChIP-Seq Tag File:
6: Convert Genomic I6 on data 4 Advanced Options: Hide Advanced Options Select a pre-defined configuration file: CCAT provided Histone Modification CCAT provided Transcription Factor Binding	5: Convert Genomic I6 on data 3
Advanced Options: Hide Advanced Options Select a pre-defined configuration file: CCAT provided Histone Modification CCAT provided Transcription Factor Binding	ChIP-Seq Control File:
Hide Advanced Options Select a pre-defined configuration file: CCAT provided Histone Modification CCAT provided Transcription Factor Binding	6: Convert Genomic I6 on data 4
Select a pre-defined configuration file: CCAT provided Histone Modification	Advanced Options:
CCAT provided Histone Modification	Hide Advanced Options 🛟
CCAT provided Transcription Factor Binding	Select a pre-defined configuration file:
· · · · · · · · · · · · · · · · · · ·	CCAT provided Histone Modification
CCAT provided Histone Modification	
	CCAT provided Histone Modification

Xu H, Handoko L, Wei X, Ye C, Sheng J, Wei CL, Lin F, Sung WK. A signal-noise model for significance analysis of ChIP-seq with negative control. Bioinformatics. 2010 May 1;26(9):1199-204.

ChIP-seq Exercise

http://main.g2.bx.psu.edu/u/james/p/exercise-chip-seq

Galaxy	Analyze Data	Workflow	Shared Data	Visualization	Admin	Help	User
Accessible Page ChIP seq exercise							

ChIP-seq exercises

For this exercise we will use a ChIP-seq dataset for CTCF in the murine G1E_ER4 cell line. This dataset has been reduced to (mostly) contain only reads aligning to chr19:

+ Calaxy Dataset G1E ER4 CTCF (chr9) A sample ChIP-seq dataset on CTCF in G1E_ER4 cells, reads have been reduced to those mapping to chr9 for demonstration use.	đ

Click the 'import this dataset' button above to add this dataset to your analysis history to being the analysis.

Mapping reads and peak calling

Step 1: First, for quality control, we will compute summary statistics on this dataset. Run the tool "NGS: QC and Manipulation > FASTQ Summary Statistics" on your dataset. When the job completes, inspect the results. How long are these reads? What is the median quality at the last position?

Step 2: Next we will map these reads to a reference genome. Use the "NGS: Mapping > Map with Bowtie for Illumina" tool. You will need to change the reference genome build you are mapping against to "mm9". Otherwise you can leave the default mapping options.

Step 3: Once are reads are mapped, we will call peaks with MACS. Use the "NGS: Peak Calling > MACS" tool. You should also change the tag size to the read length you observed in Step 1. Otherwise the default values should be reasonable.

Step 4: Once MACS completes it will produce two datasets. One is a report on the peak calling process. The other contains the positions of the peaks. How many peaks were found? Click the link to "Display at UCSC main" and you will be able to see the positions of the peaks on the genome.

Calling peaks with a control sample

Next, we will incorporate an input DNA control, import the following dataset into your history:

Galaxy Dataset G1E ER4 input (chr19) Reduced demo dataset, chr19 only	
	<u> </u>

Step 1: Map the input DNA control to mm9 using Bowtie

Step 2: Load the MACS tool again. Select your previous CTCF dataset for ChIP-seq tag file, but now select the mapped input DNA for "ChIP-seq control file". How many peaks are called this time? What is the effect of using the input control?

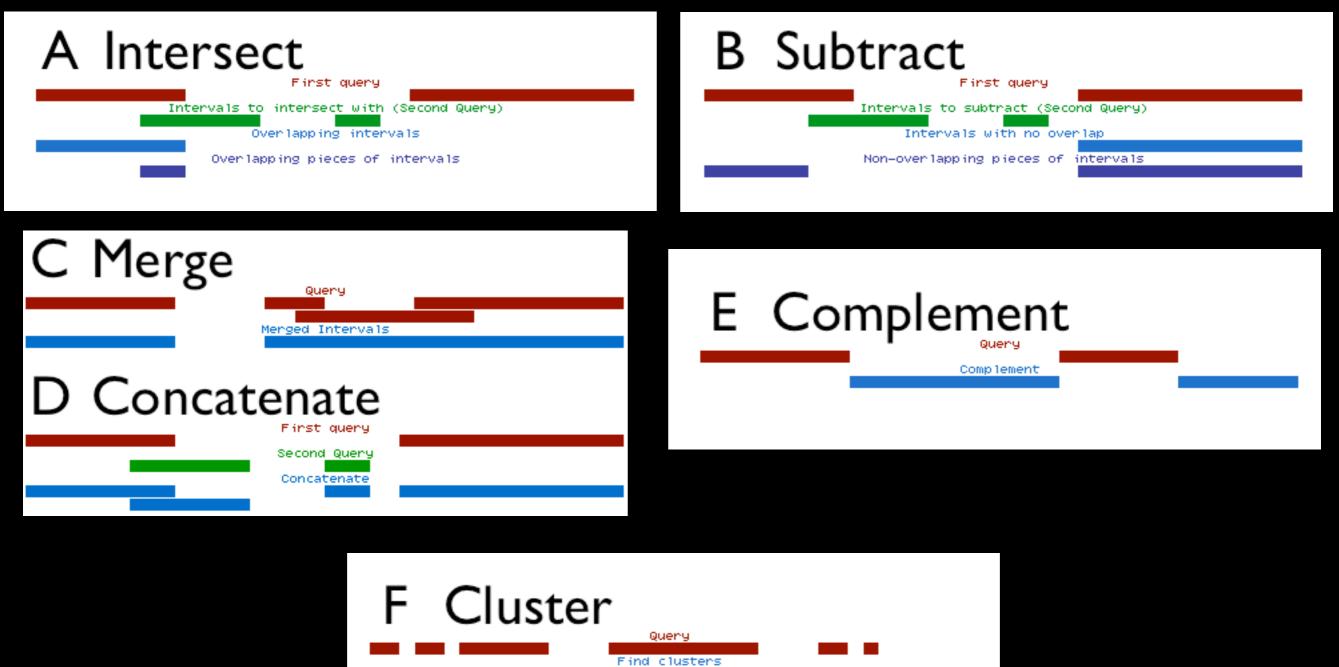
Create a workflow and reuse

Step 1: At the top of the History panel, click "Options" and select "Extract Workflow". Here you have the chance to select which jobs will be included in the workflow. Click "Uncheck all" and the select the two "Map with Bowtie" jobs and the last "MACS" job.

Step 2: Import the following datasets -- CTCF ChIP and control for the G1E line:

Đ	Galaxy Dataset G1E CTCF	đ
•	Galaxy Dataset G1E input	P

Step 3: At the bottom of the tools menu, select "Workflows > All Workflows", this will show the workflow list. Select the workflow you just created. You will be able to select input datasets for the two Bowtie steps, select the CTCF and input datasets. Click "Run Workflow".


Identify differential binding sites

G1E is a model for erythropoiesis, the G1E line is a GATA1 null derived line which can be induced to differentiate by estradiol treatment (thus G1E-ER4). Here we will use Galaxy to identify sites that have differential binding across the two developmental stages.

I have Peaks, now what?

- Visualize
- Share
- Compare to existing Annotations
 - Interval Operations
 - Annotation Profiler

Genomic Interval Operations

Merge clusters

Secondary Analysis

- A simple goal: determine number of peaks that overlap a) coding exons, b) 5-UTRs, c) 3-UTRs, d) introns and d) other regions
- Get Data
 - Import Peak Call data
 - Retrieve Gene location data from external data resource
- Extract exon and intron data from Gene Data (Gene BED To Exon/Intron/Codon BED expander x4)
- Create an Identifier column for each exon type (Add column x4)
- Create a single file containing the 4 types (Concatenate)
- Complement the exon/intron intervals
- Force complemented file to match format of Gene BED expander output (convert to BED6)
- Create an Identifier column for the 'other' type (Add column)
- Concatenate the exons/introns and other files
- Determine which Peaks overlap the region types (Join)
- Calculate counts for each region type (Group)

Secondary Analysis

🗧 Galaxy			Analyze Data	Workflow	Shared Data	Admin	Help	User	
Tools Opti	tions 👻	3 UTR 803							History Options -
Get Data	0	5 UTR 574 coding exons	2743						<u>/Couon beb on uata 1</u>
Send Data		introns 13746							2: MACS peak calls (broadPeak)
ENCODE Tools		other 12499							21,728 regions, format: interval, database:
Lift-Over									mm9
Text Manipulation									Info:
Filter and Sort									🖬 🖏 🖉 📄
Join, Subtract and Group									display at UCSC <u>main</u> <u>test</u> view in <u>GeneTrack</u> display at Ensembl <u>Current</u>
Join two Queries side by side	on								
a specified field									1.Chrom 2.Start 3.End 4 5 6 7 8 9 chr1 4132666 4133002 . 0 . 16.04 14.366 0.
Compare two Queries to find									chr1 4322446 4323079 . 0 . 27.07 26.185 0.
common or distinct rows									chr1 4336241 4336651 . 0 . 23.06 18.736 0.
Subtract Whole Query from									chrl 4406740 4407268 . 0 . 16.20 23.794 0.
another query									chr1 4506655 4507162 . 0 . 20.30 21.868 0. chr1 4758431 4758873 . 0 . 24.01 30.691 0.
 Group data by a column and 									
perform aggregate operation on other columns.	1								P
									1: UCSC Main on Mouse: refGene @ 0 🖄
 Column Join 									(genome)
Convert Formats									28,108 regions, format: bed, database: mm9
Extract Features									Info: UCSC Main on Mouse: refGene (genome)
Fetch Sequences									🖉 🗔 😳 🖉 📄
Fetch Alignments									display at UCSC main test view in
Get Genomic Scores									GeneTrack display at Ensembl Current
Operate on Genomic Intervals									1.Chrom 2.Start 3.End 4.Name 5 6.1
<u>Statistics</u>									chr1 134212701 134230065 NM_028778 0 +
Wavelet Analysis									chr1 134212701 134230065 NM_001195025 0 + chr1 33510655 33726603 NM_008922 0 -
Graph/Display Data									chr1 58714963 58752833 NM_175370 0 -
Regional Variation									chr1 25124320 25886552 NM_175642 0 -
Multiple regression									160945,328960,353082,363947,364951,389516,393
Multivariate Analysis	Ă								
Evolution	Ψ.								

Annotation Profiler

- One click to determine base coverage of the interval (or set of intervals) by a set of features (tables) available from UCSC
- galGal3, mm8, panTro2, rn4, canFam2, hg18, hg19, mm9, rheMac2

Profile Annotations

Choose Intervals:

34: UCSC Main on Mous..na (genome) 💲

Keep Region/Table Pairs with 0 Coverage:

Output per Region/Summary: Per Region 🛟

Choose Tables to Use:

[+] Comparative Genomics
[+] Genes and Gene Prediction Tracks
[+] Mapping and Sequencing Tracks
[+] Phenotype and Allele
[+] Expression and Regulation
[+] mRNA and EST Tracks
[-] Variation and Repeats
Microsatellite
Simple Repeats
Simple Repeats
SNPs (128)
[+] Uncategorized Tables

Selecting no tables will result in using all tables.

Available NGS Analysis Toolsets

- Prepare, Quality Check and Manipulate FASTQ reads
- Mapping
- SAMTools
- SNP & INDEL analysis
- Peak Calling / ChIP-seq
- RNA-seq analysis

RNA-seq

- TopHat
- Cufflinks
- Cuffcompare
- Cuffdiff

NGS: RNA Analysis

RNA-SEQ

- <u>Tophat</u> Find splice junctions using RNA-seq data
- <u>Cufflinks</u> transcript assembly and FPKM (RPKM) estimates for RNA-Seq data
- <u>Cuffcompare</u> compare assembled transcripts to a reference annotation and track Cufflinks transcripts across multiple experiments
- <u>Cuffdiff</u> find significant changes in transcript expression, splicing, and promoter use

FILTERING

 Filter Combined Transcripts using tracking file

TopHat

- Map RNA (FASTQ) to a reference Genome
 - Uses Bowtie
 - BAM file of accepted hits
- Find Splice Junctions
 - File with two connected BED blocks

Tophat

Will you select a reference genome from your history or use a built-in index?:

Use a built-in index Built-ins were indexed using default options

Select a reference genome:

Human (Homo sapiens): hg18 Canonical
If your genome of interest is not listed, contact the Galaxy team

Is this library mate-paired?: Single-end

RNA-Seq FASTQ file: 1: imported: h1-hESC..ple Dataset \$

Must have Sanger-scaled quality values with ASCII offset 33

TopHat settings to use:

Use Defaults

You can use the default settings or set custom values for any of Tophat's parameters.

Trapnell, C., Pachter, L. and Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111 (2009).

Cufflinks

- Input: aligned RNA-Seq reads (SAM/BAM; e.g. from TopHat)
- assembles transcripts
- estimates relative abundance
- tests for differential expression and regulation
- Outputs
 - GTF: Assembled Transcripts
 - Tabular, with coordinates and expression levels
 - Transcripts
 - Genes

Trapnell C, Williams BA, Pertea G, Mortazavi AM, Kwan G, van Baren MJ, Salzberg SL, Wold B, Pachter L. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nature Biotechnology doi:10.1038/nbt.1621

Cuffcompare

- Compare assembled transcripts to a reference annotation (2+ GTF files)
- Track Cufflinks transcripts across multiple experiments (e.g. across a time course)
- Outputs:
 - Transcripts Accuracy File
 - "accuracy" of the transcripts in each sample when compared to the reference annotation data
 - Transcripts Combined File
 - union of all transfrags in each sample
 - Transcripts Tracking Files
 - matches transcript structure that is present in one or more input GTF files

Trapnell C, Williams BA, Pertea G, Mortazavi AM, Kwan G, van Baren MJ, Salzberg SL, Wold B, Pachter L. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nature Biotechnology doi:10.1038/nbt.1621

Cuffdiff

- Inputs
 - GTF from Cufflinks, Cuffcompare, other source
 - 2 SAM files from 2+ samples
- Changes in
 - transcript expression
 - splicing
 - promoter use

Trapnell C, Williams BA, Pertea G, Mortazavi AM, Kwan G, van Baren MJ, Salzberg SL, Wold B, Pachter L. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nature Biotechnology doi:10.1038/nbt.1621

RNA-seq Tutorial

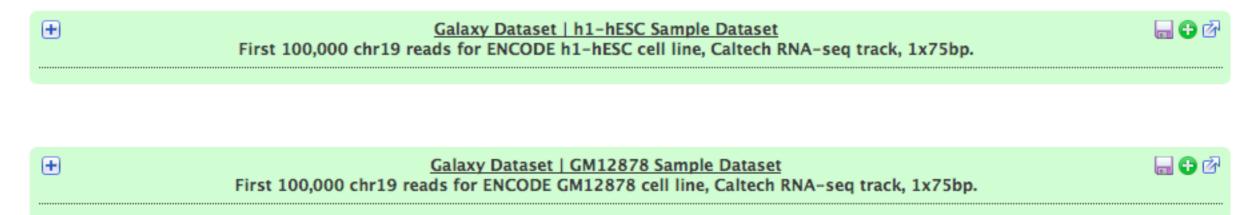
and

Analyze Data

Workflow

Shared Data

Visualization Admin


Help User

Published Pages | jeremy | Galaxy RNA-seq Analysis Exercise

RNA-seq Analysis Exercise

Galaxy provides multiple tools for performing RNA-seg analysis. This exercise introduces these tools and guides use of these tools on some example datasets; prominent RNA-seq tools include Tophat and Cufflinks. Familiarity with Galaxy and the general concepts of RNA-seq analysis are useful for understanding this exercise. This exercise should take 1-2 hours.

Below are small samples of datasets from the ENCODE Caltech RNA-seq track; specifically, the datasets are single 75bp reads from the h1-hESC and GM12878 cell lines. The sampled reads map mostly to chr19. Import the datasets to your history by clicking on the green-plus icon labeled 'Import'.

Understanding and preprocessing the reads

You should understand the reads a bit before analyzing them. Preprocessing may be needed as well.

Step 1: Compute statistics and create a boxplot of base pair quality scores for each set of reads using the [NGS: QC and manipulation >] FASTQ Summary Statistics tool and then plot the output using the [Graph/Display Data >] Boxplot. Often, it is useful to trim reads to remove base positions that have a low median (or bottom guartile) score. For this exercise, assume a median guality score of below 15 to be unusable. Given this criterion, is trimming needed for the datasets? If so, which base pairs should be trimmed?

Step 2: If necessary, trim the reads based on your answers to step A using [NGS: QC and manipulation >] FASTQ Trimmer

Map processed reads

The next step is mapping the processed reads to the genome. The major challenge when mapping RNA_seg reads is that the reads because they come from RNA_often

http://main.g2.bx.psu.edu/u/jeremy/p/galaxy-rna-seg-analysis-exercise

Overview

NGS Data
Galaxy tools for NGS Data
Galaxy for Sequencing Facilities

Sample Tracking System

- Built-in system for tracking sequencing requests
- Customizable interfaces
 - Sequencing Facility Managers/Administrators
 - Customers/Users/Biologists
- Streamlines delivery of data from sequencing runs to customers

Sequencing Facility Managers

- Setup the Galaxy sample tracking system according to the core facility workflow. [Once per request type]
- Create and submit a sequencing request on behalf of another user.
- Reject an incomplete or erroneous sequencing request.
- Receive samples and assign them tracking barcodes.
- Setup data transfer from the sequencer
- Transfer the datasets from the sequencer to Galaxy at the end of the sequence run.

Can be automated

Sequencing Facility Users

- Create and submit a sequencing request.
- Edit and resubmit a rejected sequencing request.
- Obtain datasets at the end of a sequencing run.
- Select Libraries and Histories, and Workflows to populate and run on sequenced samples.

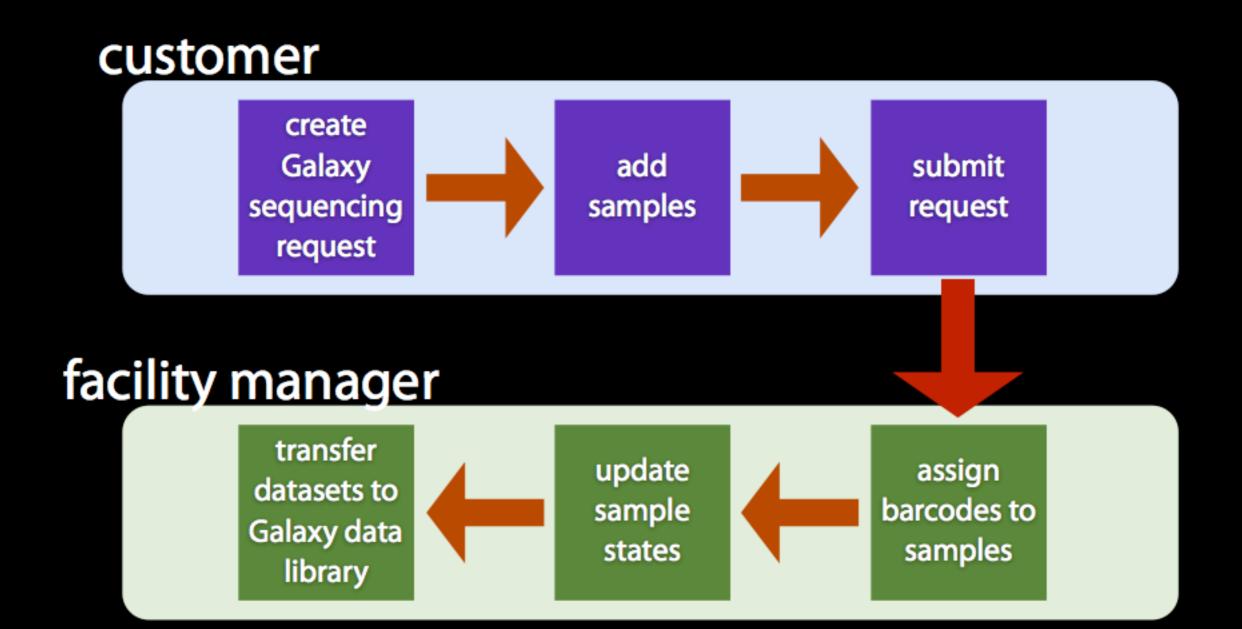
Configure Available Request / Sample Options

💳 Galaxy	Analyze Data	Workflow	Shared Data	Lab	Admin	Help	User
Administration Security Manage users	For		Advance	d Search	<u>l</u>		Create new form
 Manage groups Manage roles 		<u>Name</u>			1	Description	
Data <u>Manage data libraries</u>			al run details 🔻	Portal Fo	<u>rm</u> ▼		Sample run details template External Service Information Form
Server Reload a tool's configuration			iences request				Sequencing Request Form
 Profile memory usage 	4	Atlantic Biosc	d forms: Delete	~	lelete		Sequencing Sample Form
 Manage jobs Form Definitions 							
 Manage form definitions Sample Tracking 							
 Manage sequencers and external services 							
Manage request types							
 Sequencing requests Find samples 							

• Uses Galaxy forms, do this once

	View
Edit form definition "Atlantic Biosciences request" (Sequencing Request Form)	
Name	
Atlantic Biosciences request	
Description	
Form definition fields	
1. Name (TextField)	
2. Scientific Contact (AddressField)	
Add field	
Save	

- Configurations can be
 - custom-built
 - loaded from provided configuration files


Form defin	ition "Atlantic	Biosciences sample	e" (Sequencing Sam	ple Form)	
Layout1					
Run type	Read length	Number of Lanes	Alignment target	Processing time	Comments
SelectField:	SelectField:	TextField:	TextField:	SelectField:	TextField:
Options: SR PE	Options: 36 50 75 100	- (optional)	- (optional)	Options: Std Rush option3	- (optional)

Edit

Configure the Sequencer

🔁 Galaxy	alyze Data Workflow Shared Data Lab Admin Help User
Administration	External Services Reload external service types Create new external service
Security	
Manage users	search Advanced
Manage groups	<u>Search</u>
Manage roles	<u>Name</u> <u>Description</u> External Service Type <u>Last Updated</u>
Data	Analysis Portal service Atlantic Biosciences Analysis Portal 3 minutes ago
Manage data libraries	
Server	For 0 selected externalservices: Delete Undelete
Reload a tool's configuration	Edit external service
Profile memory usage	4
Manage jobs	Name:
Form Definitions	Analysis Portal service
Manage form definitions	Description:
Sample Tracking	
Manage sequencers and external	Version:
services	1
Manage request types	Hostname or IP address:
Sequencing requests	192.168.56.101
Find samples	(Required)
	User name:
	administrator
 Available S 	rvices are now configured (Required)
	Password:
 Ready for c 	Stomers (Required)
	Data directory:

How does it all work?

Customer Creates a Request

- Galaxy	Analyze Data	Workflow	Shared Data Lab	Admin	Help	User
Sequencing search	Advanced Search			<u>encing Requ</u> Samples	<u>uests</u>	Create new request
<u>Name</u>	Description	Samples	Туре	Last Up	odated 1	State
No Items						
For 0 selected	requests: Delete Undelete	•				

🗧 Galaxy	Analyze Data	Workflow	Shared Data	Lab	Admin	Help	User	
								Browse requests
Create a new sequencing req	juest							
Select a request type configu Select one	r ation: I are not sure about	t the request	type configuratio	on.				

Customer Describes Request

Create a new sequencing request

Select a request type configuration:

Atlantic Biosciences 💲

Contact the lab manager if you are not sure about the request type configuration.

Name of the Experiment

My first ChIP-seq Experiment

(Required)

Description

This is Experiment was performed using the protoc (Optional)

Name

(Optional)

Scientific Contact

dan@bx.psu.edu office address 🛟

office Penn State University Wartik Lab University Park PA 16803 United States Phone: 867-5309

(Optional)

Save Add samples

Customer Adds a Sample

- Galaxy			Analyze Data	Workflow	Shared Data	Lab	Admin	Help	User	
Add Samples to S	Sequ	encing Request	"My first Chl	P-seq Exp	eriment"					Request Actions 🔻
Name S	State	Data Library		Folder			History			Workflow
Sample_1 (required)		Dan's Sequencing	Requests 🛟	ChIP-seq		\$	My own C	hIP-seq	Experiment!	Dan's ChIP-seq Workflow 🛟
For each sample, sel first and then the de			older in which ye	ou would like	the run dataset	s depo	sited. To au	tomatica	lly run a workfl	ow on run datastets, select a history
Layout1										
	-	rom sample None		pied or leave	selection as Nor	ne to a	dd a new "ge	eneric" sa	ample.	
	ple bu	Cancel atton for each new s	ample and click	the Save but	tton when you h	ave fin	ished addin	g sample	25.	
Import samples	from	csv file								

- Provide a name for the sample History
- Data Library and Folder

• Workflow to run

Samples Added, Submit Request

🗧 Gala	xy	Analyze Data	Workflow	Shared Data	Lab	Admin	Help	User		
							Edit s	samples	Submit request	Request Actions 💌
Add Sample	es to Sequencing	g Request "My first Chl	P-seq Exp	eriment"						
Name	State	Data Library		Folder	History				Workflow	
Sample_1	Unsubmitted	Dan's Sequencing Reques	ts	ChIP-seq	My own C	hIP-seq E	xperimer	n <u>t!</u>	Dan's ChIP-seq	Workflow
For each same	le select the data l	ibrary and folder in which yo	ou would like	the run datase	ts denosi	ted To aut	tomatical	llv run a w	orkflow on run data	stets select a history

For each sample, select the data library and folder in which you would like the run datasets deposited. To automatically run a workflow on run datastets, select a history first and then the desired workflow.

Layout1

Select the sample from which the new sample should be copied or leave selection as None to add a new "generic" sample.

Add sample

Click the Add sample button for each new sample.

Import samples from csv file

The page at http://localhost:8080 says:

More samples cannot be added to this request after it is submitted. Click OK to submit.

C 1		1
Cancel	- 1	- 0
Curreer	1	

OK

Samples enter "New" state

- Gal	axy		Analyze Data	Workflow	Shared Data	Lab	Admin	Help	User	
										Request Actions -
🕑 The seq	uencing requ	est has b	een submitted.							
Sequencin	g request "M	ly first C	ChIP-seq Experiment"							
Current st										
Descriptio This is Exp		performe	ed using the protocol							
User: dan@bx.ps	su.edu									
Request ty Atlantic Bio										
More 🕨										
Samples										Edit samples
Name	Barcode	State	Data Library	Folde	r History				Workflow	Run Datasets
Sample_1		New	Dan's Sequencing Request	s ChIP-	seq <u>My own</u>	ChIP-seq	Experimen	<u>nt!</u>	Dan's ChIP-seq Workflow	0
Layout1										

• Customer sends samples to sequencing facility

Sequencing Facility is informed of Request

💳 Galaxy	Ana	yze Data	Workf	low Shared Dat	a Lab	Admin H	lelp User		
Administration Security Manage users	Seq sear	uencing	Rec	Advanced Sear	<u>ch</u>				Create new request
Manage groups		Name		Description	Samples	Туре	Last Updated 1	<u>State</u>	<u>User</u>
 <u>Manage roles</u> Data <u>Manage data libraries</u> Server 		<u>My first</u> <u>ChIP-seq</u> Experiment	▼	This is Experiment was performed using the protocol	1	<u>Atlantic</u> <u>Biosciences</u>	26 minutes ago	In Progress	dan@bx.psu.edu
 <u>Reload a tool's configuration</u> <u>Profile memory usage</u> 		new reques	<u>t</u> =		1	<u>Atlantic</u> Biosciences	3 days ago	<u>Complete</u>	customer@corp.com
 Manage jobs Form Definitions 		<u>some</u> experiment test	~	a test description	1	<u>Atlantic</u> Biosciences	3 days ago	Complete	customer@corp.com
<u>Manage form definitions</u> Sample Tracking		For 0 select	ed req	uests: Delete	Undelete)			

- Manage sequencers and external services
- Manage request types
- Sequencing requests
- Find samples

Sequencing Facility Receives Samples

- Facility
 - assigns a barcode to sample tubes
 - Scans barcode at each step to change state

Edit	Current Sample	s of Sequencing	g Requ	uest "My first ChIP-seq Expe	riment"				
	Name	Barcode	State	Data Library	Folder	History	Workflow	Run Datasets	Delete
	Sample_1 (required)		<u>New</u>	Dan's Sequencing Requests 🛟	ChIP-seq \$	My own ChIP-seq Experiment! \$	Dan's ChIP-seq Workflow	<u>0</u>	*
For s	elected samples: (Select one		\$					
For ea	ch sample, select t	he data library and	l folder	in which you would like the run da	tasets deposited. To automatically	run a workflow on run datastets, selec	t a history first and then the des	ired workflow.	
🕨 Lay	/out1								
Sav Click		vhen you have finis	shed ed	iting the samples					

• Customer can watch progress of sequencing request

Sequencing Requests Creation search Advanced Search						Create new request
	Name	Description	Samples	Туре	Last Updated 1	<u>State</u>
	My first ChIP-seq Experiment 🔻	This is Experiment was performed using the protocol	1	Atlantic Biosciences	35 minutes ago	Complete
	For 0 selected requests: Delete Undelete					

Sequencing Finished

- Datasets are transferred from sequencer into Galaxy
 - Library
 - User's history
- Galaxy Workflow is executed on Dataset
- Customer is automatically emailed

Extending Sample Tracking with ngLims

- An add-on written by community contributor Brad Chapman
- http://bitbucket.org/chapmanb/galaxy-central
- <u>https://bitbucket.org/galaxy/galaxy-central/wiki/LIMS/</u> <u>nglims</u>
- <u>http://bcbio.wordpress.com/2011/01/11/next-generation-sequencing-information-management-and-analysis-system-for-galaxy/</u>

Using Galaxy

- Use public Galaxy server: UseGalaxy.org
- Download Galaxy source: GetGalaxy.org
- Galaxy Wiki: GalaxyProject.org
- Screencasts: GalaxyCast.org
- Public Mailing Lists
 - galaxy-bugs@bx.psu.edu
 - galaxy-user@bx.psu.edu
 - galaxy-dev@bx.psu.edu

Acknowledgments

- All Members of the Galaxy Team (see them at <u>https://bitbucket.org/galaxy/galaxy-central/wiki/GalaxyTeam</u>)
- Thousands of our users
- GMOD Team
- UCSC Genome Informatics Team
- BioMart Team
- FlyMine/InterMine Teams
- Funding sources
 - NSF-ABI
 - NIH-NHGRI
 - Beckman Foundation
 - Huck Institutes at Penn State
 - Pennsylvania Department of Public Health
 - Emory University

Enis Afgan I Emory

Guru Ananda I Penn State

Dannon Baker I Emory

Galaxy Team

Jeremy Goecks I Emory

Sergei Kosakovsky Pond I UCSD

Greg von Kuster I Penn State

Dave Clements I Emory

Nate Coraor I Penn State

+ Jennifer Jackson

Ross Lazarus I Harvard I BakerIDI

Kanwei Li I Emory

Anton Nekrutenko I Penn State

Kelly Vincent I Penn State

James Taylor I Emory

Two full days of presentations, workshops, and conversations by and for Galaxy community members

Galaxy 201 Comunity Conference 25-26 May Lunteren, The Netherlands

http://galaxy.psu.edu/gcc2011