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Abstract
Background: Transcription factors (TFs) are core functional proteins which play important roles
in gene expression control, and they are key factors for gene regulation network construction.
Traditionally, they were identified and classified through experimental approaches. In order to save
time and reduce costs, many computational methods have been developed to identify TFs from
new proteins and to classify the resulted TFs. Though these methods have facilitated screening of
TFs to some extent, low accuracy is still a common problem. With the fast growing number of new
proteins, more precise algorithms for identifying TFs from new proteins and classifying the
consequent TFs are in a high demand.

Results: The support vector machine (SVM) algorithm was utilized to construct an automatic
detector for TF identification, where protein domains and functional sites were employed as
feature vectors. Error-correcting output coding (ECOC) algorithm, which was originated from
information and communication engineering fields, was introduced to combine with support vector
machine (SVM) methodology for TF classification. The overall success rates of identification and
classification achieved 88.22% and 97.83% respectively. Finally, a web site was constructed to let
users access our tools (see Availability and requirements section for URL).

Conclusion: The SVM method was a valid and stable means for TFs identification with protein
domains and functional sites as feature vectors. Error-correcting output coding (ECOC) algorithm
is a powerful method for multi-class classification problem. When combined with SVM method, it
can remarkably increase the accuracy of TF classification using protein domains and functional sites
as feature vectors. In addition, our work implied that ECOC algorithm may succeed in a broad
range of applications in biological data mining.
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Background
Transcription factors (TFs) are special DNA-binding pro-
teins, which are commonly recognized by RNA polymer-
ases for transcription initiation. Under certain physiologic
conditions, TFs regulate expression levels of downstream
genes effectively by binding to specific DNA fragments in
the promoter regions. Such a process is closely related to
important biological processes such as activation of cell
cycle, regulation of differentiation, and maintenance of
immunologic tolerance etc [1-3]. Generally, according to
their structure and function, TFs can be grouped into four
classes: (1) TFs with basic domains (basic-TFs), (2) TFs
with zinc-coordinating DNA binding domains (zinc-TFs),
(3) TFs with Helix-turn-helix (helix-TFs), and (4) TFs with
Beta-Scaffold factors (beta-TFs). It is well known that
interaction mechanisms of TFs and motifs differ for differ-
ent types of TFs [4-6]. Therefore, it is a momentous task to
identify and classify TFs for protein functional annotation
and interaction mechanism investigations in this post
genome era.

Traditionally, a transcription factor, as a special case of
DNA-binding protein, is identified and classified by bio-
chemical experiments, which can be time-consuming and
costly, and difficult to apply to a large scale. To overcome
these defects, computational approaches are often used.
Kumar et al. developed a support vector machine method
to identify DNA-binding proteins[7]. Hwang et al. con-
structed a web server for prediction of DNA-binding resi-
dues in DNA-binding proteins, where three machine
learning methods (support vector machine, kernel logistic
regression and penalized logistic regression) were imple-
mented[8]. Cho et al. built up a hidden markov model to
find out possible DNA binding sites for zinc finger pro-
teins[9]. As for transcription factors, BLAST methods were
applied in most cases [10-13]. We have also constructed a
simple model based on the nearest neighbor algorithm
(NNA) for TF prediction in our previous work[14].

In this paper, support vector machine (SVM) and error-
correcting output coding (ECOC) algorithm were utilized
for TF identification and classification respectively. SVM is
a method of machine learning with minimum structure
risk, and it is generally employed for classification of two
classes. ECOC is a method originated from information
and communication engineering field, and it is com-
monly used to solve multi-class classification problems.
Protein domains have been used as prediction signatures
for protein-protein-interaction[15], protein struc-
tures[16,17], and protein sub-cellular locations[18]. On
the other hand, some proteomics studies indicated close
correlation exists between functional sites (such as sites of
post transcriptional modification) and protein functions
[19-21]. Therefore, we chose protein domains and func-
tional sites as features to represent proteins and con-

structed a detector to distinguish TFs from non-TFs
through a SVM method. Subsequently, a classifier based
on ECOC algorithm was built to categorize TFs into four
classes mentioned above. After building the detector and
classifier, jackknife tests were used to assess performance
of these two programs. In order to further investigate the
efficiency of our approach, comprehensive comparison
among BLAST, NNA, and SVM methods was carried out
for TF identification, and comparison among BLAST,
NNA, and ECOC was executed for TF classification. A web
server was implemented to facilitate the use of these two
tools.

Results and discussion
Identification of transcription factors
A detector was constructed based on a linear SVM model
to distinguish TFs from non-TFs. We built a training data
set excluding those proteins that were not annotated with
any protein domains or functional sites. This training set
contained 450 TFs and 1727 non-TFs [see additional file
1]. Each item of the dataset was denoted with a 4758-
dimension feature vector (see "Methods" part for details).

Jackknife cross validation test was used to evaluate capa-
bility of the detector, because the jackknife cross valida-
tion test was regarded as the most objective and rigorous
[22-24]. The jackknife cross validation test was operated
as follows: first, for each protein in the whole training
dataset, the detector was trained on the rest of the dataset
(excluding the protein itself) then the trained detector was
applied to predict the protein's attribute (TF or non-TF).
Four measures were calculated for subsequent analysis:
(1) the true positive(TP), (2) the false positive(FP), (3) the
true negative(TN), (4) the false negative(FN). The true
positive and the true negative were correct predictions for
TFs and non-TFs respectively. A false positive occurred
when a non-TF was predicted as a TF and a false negative
occurred when a TF was predicted as a non-TF. Finally, the
true positive rate, true negative rate, and total success rate
were calculated by the following formulas:

Here, the "true positive rate" is the percentage of TFs pre-
dicted correctly; the "true negative rate" is the percentage
of non-TFs predicted correctly; and the "total success rate"
is the overall percentage of correctly predicted items (both
TFs and non-TFs). Furthermore, we performed the jack-
knife test in several conditions, where positive and nega-
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tive items were mixed in different proportions to simulate
TF distribution in the natural world. The rate of positive
items versus negative ones was changed from 1:1 to 1:3,
with 0.5 as the step size, where the negative ones was ran-
domly picked from the overall non-TFs datasets. SVM
method was carried out for each condition in a jackknife
way. Results were shown in table 1. When the numbers of
positive and negative items were the same(450 versus
450), the true positive rate reached 88.44%, and the true
negative rate achieved 88.00%, which meant the detector
had good performance for both TF and non-TF identifica-
tion. When the negative item number increased from 450
to 1350, the accuracy of the detector did not change dras-
tically according to the true positive, true negative rate,
and total success rate. Tests with different mixture rates
showed that the method presented here was strong and
robust.

Comparison among BLAST, NNA and SVM algorithms
In order to survey performance of the detector further,
comparison among BLAST, NNA, and SVM algorithm was
carried out with the dataset mentioned in paragraph of
identification of transcription factor (450 positive items
vs. 1727 negative items). Accuracy was calculated for pos-
itive and negative datasets respectively by the following
formulas:

In the BLAST method, the query protein was identified as
the same category as its best hit when searching similarity
in the whole dataset excluding the protein itself. While in
NNA method, a protein was assigned to a category with
the nearest distance (see [14] for details). The distance
function was defined as:

Where, xi·xk is dot product of xi and xk, ||x|| is the modulus
of a protein vector x. As shown in table 2, for the positive
set, accuracy obtained by BLAST and NNA method was
around 72% and 82%, which was lower than SVM
method by about 14% and 4% respectively. While in the
negative set, accuracy acquired by BLAST, NNA, and SVM
method was about 74%, 93% and 91% respectively. In
essential, BLAST and NNA algorithms sort an unknown
item through attributes of a local item (the nearest neigh-
bor). Hence, detectors based on these two algorithms
incline to group an item into a category with a larger size.
In our TF identification scenario, the number of negative
set was much larger than that of the positive set, so items
were more probably to be identified as negative by NNA
method. Therefore the accuracy of identifying negative
samples by NNA method was slightly higher than SVM
algorithm. However integrated survey for both positive
and negative sample indicated that SVM performed better
than BLAST and NNA methods in a dataset with balanced
positive and negative item numbers (data not shown).
Therefore, we think performance of SVM is superior to
BLAST method and comparable to the NNA method.

Classification of transcription factors
For classification of transcription factor, the ECOC algo-
rithm was combined with SVM method to build a multi-
class classifier, which was used to categorize TFs into four
classes: TFs with basic domains, TFs with zinc-coordinat-
ing DNA binding domains, TFs with Helix-turn-helix, and
TFs with Beta-Scaffold factors. In our work a dataset con-
taining 138 TFs with known class information was built.
It included 37 basic-TFs, 33 zinc-TFs, 36 helix-TFs, and 32
beta-TFs [see additional file 1]. Each TF included in the
dataset was presented with a 4758-dimension feature vec-
tor. Finally, in order to assess power of the multi-class
classifier, the jackknife test was used to evaluate perform-
ance of both ECOC and one-against-all algorithm (one-
against-all algorithm was a general algorithm for multi-
class problems see "Method" part for details), in both
algorithms the SVM method was employed as the basic
binary classifier, and either the one-against-all or ECOC
was utilized as the framework to link basic binary classifi-
ers. The jackknife test was done as in the following: for
each item in the dataset, its category was predicted using
the parameters trained from the remaining items in the
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Table 1: Jackknife outcomes of TF identification

Data set size Jackknife test results
Positive Negative true positive rate true negative rate Total success rate

450 450 88.44% 88.00% 88.22%
450 675 88.67% 89.19% 89.07%
450 900 88.44% 90.67% 89.93%
450 1125 87.56% 90.93% 89.97%
450 1350 86.67% 91.41% 90.22%
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dataset excluding itself. Then the success rates of the four
classes were calculated for the two algorithms. Equations
used for success rates were given as below:

Results of the one-against-all and ECOC algorithm were
listed in table 3. Compared with the one-against-all algo-
rithm, accuracy of ECOC algorithm increased notably.
The success rates were improved 2.71%, 6.06%, 2.78%,
and 9.37% for basic-TF, zinc-TF, helix-TF, and beta-TF
respectively. For overall accuracy, the error rate was
reduced from 7.25% to 2.17%. This comparison demon-
strated that the ECOC method surpassed the one-against-
all method for TF classification.

Comparison among BLAST, NNA, and ECOC algorithms
In order to investigate performance of the multi-class clas-
sifier(depicted in paragraph of classification of transcrip-
tion factor) further, comparison of BLAST, NNA, and
ECOC algorithm was executed with the dataset described
above (138 TFs in total, including 37 basic-TFs, 33 zinc-
TFs, 36 helix-TFs, and 32 beta-TFs). BLAST and NNA
methods were performed in similar ways as described in
the section of comparison among BLAST, NNA, and SVM
algorithms. At last, each category of TFs and total success
rate was calculated for BLAST, NNA, and ECOC algorithm
through formulas 4. As shown in table 4, success rates of
all four TF classes were elevated to some extent when the
ECOC approach was employed. Detailed analysis found
that when comparing BLAST to ECOC algorithm, the
maximal performance enhancement occurred in the
basic-TF class, with a success rate lifted from 67.57% to
97.30%. When comparing NNA and ECOC algorithm, the
biggest improvement appeared in the beta-TF class with a
success rate raised from 87.50% to 100.00%. These results

illuminated that ECOC method did have strong power in
error correcting and fine tuning performance in multi-
class categorization. When the whole dataset was consid-
ered, accuracy of BLAST and NNA was about 83% and
92%, which was around 15% and 6% lower than ECOC
method respectively. This demonstrated that ECOC
method outperformed greatly the BLAST and NNA meth-
ods in TF classification.

Implement
A web server for the detector and classifier has been con-
structed to facilitate the application of the two tools. Cur-
rently, two data types are supported by the server: Swiss-
Prot AC numbers and protein sequences in FASTA format.
For protein with Swiss-Prot AC numbers, information of
protein domains and functional sites for the protein was
extracted from the InterPro database. For a new sequence
that is not covered in InterPro database, we used a pro-
gram named InterProScan to screen its potential protein
domains and functional sites. InterProScan is a program
developed by EMBL-EBI. It combines different protein sig-
nature recognition methods into one system. Input of the
program is a protein sequence with FASTA format and its
output is a result file that contains InterPro entries of the
sequence. Default parameters of the program were used in
our research. For more detailed information of the pro-
gram, please refer to webpage of InterProScan[25]. Cur-
rently, we have downloaded the program and combined
it with our transcription factor tools. Users are required to
provide an email address when submitting a new task.
After the task is done, a reminding email will be sent to
the user automatically.

Conclusion
In this paper, an automatic detector was built for TF iden-
tification and a multi-class classifier was constructed for
TF classification. Results of our work indicated that pro-
tein domains and functional sites were valid features for
TF identification and classification. Moreover, our
research was carried out on datasets with removed redun-
dancy of sequence similarity, which meant our methods
could provide beneficial supplement to sequence-similar-
ity-based algorithms, such as the BLAST method, for TF
identification and classification. We also believe that
ECOC algorithm will have a broad application in life sci-
ence, for example, classification of protein quaternary
structures, categorization of kinase and prediction of pro-
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Table 2: Comparison among the BLAST, NNA, and SVM algorithm

Total(number) BLAST method NNA method SVM method
correct number Success rate (%) Correct number Success rate (%) correct number Success rate (%)

positive factor(450) 322 71.56 367 81.56 388 86.22
negative factor(1727) 1286 74.46 1612 93.34 1564 90.56
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tein subcellular localization etc. The detector and classifier
implemented in our web server can be utilized as effective
tools for TF discovery and annotation, especially for pro-
teins with little previous knowledge. Although the two
tools presented here can identify and classify TFs accu-
rately when they have some protein domains and/or func-
tional sites available, the two tools can not predict a
protein with no protein domain or functional site anno-
tated since this information are required in order to repre-
sent the protein in a vector. However, we believe that the
impact of this limitation may become less significant
since more protein domains and functional sites are
obtained by biological experiments and more programs
can get them directly from the protein sequences with bet-
ter accuracy.

For TF identification, the SVM algorithm was employed to
build the detector and performance of the detector was
fairly good. Further investigations on datasets with differ-
ent sample mixtures showed that the detector was robust
and stable. Moreover, with protein domains and func-
tional sites, both NNA and SVM methods perform notably
better than the BLAST method. The SVM method is com-
parable to the NNA method for TF identification.

For TF classification, a brand-new algorithm called ECOC
was introduced and employed for TF classification. In
order to investigate the power of ECOC algorithm, com-
parison was executed in following two levels: In the first
level, the ECOC algorithm was utilized as a connection
framework for multi-class and was compared with a gen-
eral multi-class connection algorithm named one-against-
all, where the SVM method was used to build basic binary
classifier for both algorithms. Comparison on this level
showed that the capability of ECOC was outstanding and
it surpassed the general connection algorithm for multi-
class classification problems. In the second level, the
ECOC was combined with SVM as the underlining
method and was compared with the BLAST and NNA
method. Comparison on this level indicated that the
ECOC algorithm did have strong power in error correcting
and fine tuning performance in multi-class categorization.
Considering results of the two levels, we concluded that

the ECOC combined with SVM was a powerful tool for TF
classification.

Methods
Positive and negative datasets
In this paper, TFs and non-TFs were defined as positive
and negative factors respectively. For positive factors, a
primal dataset including 6464 items was extracted from
TRANSFAC database v9.4[4,5]. For negative factors, the
primal dataset was constructed through searching Uni-
Prot/Swiss-Prot database v10.2[26] using the following
unambiguous non-TF terms: "kinase", "ubiquitin",
"actin", "antigen", "biotin", "histone", "chaperon",
"tubulin", "transmembrane protein", "endonuclease",
"exonuclease", and "translation initiation factor". A total
of 23057 entries were collected as negative factors. Subse-
quently, we refined the two primal datasets with the fol-
lowing processes: (1) filtering out proteins without Swiss-
Prot accession number and those without annotation by
any protein domains or functional sites, (2) eliminating
redundancy in datasets against sequence similarity by pro-
gram CD-HIT and PISCES with a threshold of 25%
[27,28]. As a result, the final positive dataset contained
450 items, among which 138 items were with known class
information; and the final negative dataset contained
1727 entries in total (Table 5).

Feature vectors of a support vector machine
Whether a protein is a transcription factor or not is deter-
mined by its structure and function, hence it is a feasible
approach to identify and classify a TF protein with protein
domains and functional sites [15-21]. In this paper, we
obtained information of protein domains and functional
sites through InterPro database v15.0[29], which con-
tained 14764 entries, including protein family entries,
protein domain entries, and functional site entries. We
noticed that there was some overlap between protein fam-
ily entries and protein domain entries, or between protein
family entries and functional site entries according to
InterPro database documents. Therefore, we only kept
those protein domains and functional sites entries. As a
result, only 4758 (protein domain entry plus functional
site entry) out of 14764 entries were chosen as feature vec-
tor in order to ensure vector independency. Thus features

Table 4: Comparison among the BLAST, NNA, and ECOC 
algorithm

Target BLAST NNA ECOC
Success rate Success rate Success rate

basic-TF 25/37 = 67.57% 34/37 = 91.89% 36/37 = 97.30%
zinc-TF 29/33 = 87.88% 31/33 = 93.94% 32/33 = 96.97%
helix-TF 33/36 = 91.67% 34/36 = 94.44% 35/36 = 97.22%
beta-TF 27/32 = 84.38% 28/32 = 87.50% 32/32 = 100.00%
Overall 114/138 = 82.61% 127/138 = 92.03% 135/138 = 97.83%

Table 3: Performance of TF classification

Target one-against-all algorithm ECOC algorithm
Success rate Success rate

basic-TF 35/37 = 94.59% 36/37 = 97.30%
zinc-TF 30/33 = 90.91% 32/33 = 96.97%
helix-TF 34/36 = 94.44% 35/36 = 97.22%
beta-TF 29/32 = 90.63% 32/32 = 100.00%
Overall 128/138 = 92.75% 135/138 = 97.83%
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of a protein were denoted with 4758 dimension vectors.
For example, if a protein X contained the 30th and the
3856th elements in feature list, then the 30th and the
3856th value were assigned to 1, the rest were set as 0. In
this way, a protein can be expressed with the following
equation:

Support vector machine algorithm
The support vector machine(SVM) algorithm is based on
the concept of maximal margin hyperplane which depicts
the decision boundary of different categories[30,31]. In
general, the hyperplane is chosen to split positive entries
from negative ones with a maximal margin (figure 1).
That is to say, both positive and negative categories have
the greatest distances from the plane. Moreover, according
to statistic learning theory, when a hyperplane has the
maximal margin, it will have the highest accuracy to clas-
sify an unknown entry. The linear SVM model is an effec-
tive implementation of SVM algorithm, which builds a
linear equation to depict the hyperplane through positive
and negative data training. In the linear SVM model, the
hyperplane can be explicitly formulated as:

w•X + b = 0 (6)

Where w and b are model parameters of linear SVM, and
X is the feature vector of the sample. We obtained the
basic SVM package from website of svmlight, which was
free for academic research[32,33]. Here, when an
unknown sample was represented in a feature vector of
protein domains and functional sites, category Y of the
sample can be predicted using the below method:

Error-correcting output coding algorithm
Machine learning method such as SVM is more com-
monly used to handle the problem of two-class. When
such a method is applied to a multi-class problem, the
problem should be transformed into several independent
two-class tasks[34,35]. Then the method runs on each task
and combines the output of these tasks. If the output of
one task was wrong, the whole classifier would make
incorrect classification. Error-correcting output coding
algorithm (ECOC) can effectively minimize this kind of
error through redundant coding information [35-37].

Considering the classification problem of TFs, there are
four types of TFs which can be denoted as y1, y2, y3, and
y4. In our work, one-against-all and ECOC algorithm are
used to deal with the problem, where one-against-all algo-
rithm is implemented based on previous works[38,39].
For one-against-all algorithm, 4-bit words are used to
code classes. While in ECOC algorithm, the least number
of bits coding m classes is 2m-1-l [37]. In our study, the
number of classes for TFs is 4, so 7-bit words are used. For
one-against-all algorithm, a class is presented as a 4-
dimensions vector through naïve encoding method.
While for coding in ECOC algorithm, the following rules
must be taken into account so as to ensure error-correcting
power of the method: (1) maximizing hamming distance
for each column in encoding matrix; (2) maximizing
hamming distance for each line in encoding matrix; (3)

X x

x

x

xi i=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

=

1

4758

1

.

.

.

.

.

.

,
,

where
ccontaining the protein domain or functional site

otherwi

      
0, sse

⎧
⎨
⎩

(5)

Y
positive if w X b

negative if w X b
=

+ >
+ <

⎧
⎨
⎩

i
i

0

0
(7)

The maximal margin hyperplaneFigure 1
The maximal margin hyperplane. After sample training, 
the hyperplane A1 was chosen as the maximal margin hyper-
plane to split positive samples (black square) from negative 
samples (white triangle), where the maximal margin was 
defined as distance between a11 and a12.

Table 5: Positive and negative (TF/non-TF) datasets

Datasets Number

TF with class information(138) basic-TF 37
zinc-TF 33
helix-TF 36
beta-TF 32

TF without class information 312
Total TF 450
Total non-TF 1727
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there is no complement column and line in encoding
matrix. Here, in ECOC algorithm, a coding method
named exhaustive codes was utilized for encoding based
on previous works [36,37,40]. Detailed information of
exhaustive codes was depicted as follows (while 3 ≤ m ≤
7) [36,37,40]:

(a) For row 1, assigns ones to all bits;

(b) For row 2, consists of 2(m-2) zeros followed by 2(m-2) -
1 ones;

(c) For row 3, consists of 2(m-3) zeros, followed by 2(m-3)

ones, followed by 2(m-3) zeros, followed by 2(m-3) - 1 ones;

(d) For row i, alternatively runs of 2(m-i) zeros and ones;

According to rules mentioned above, the transformation
between coding and class for one-against-all and ECOC
algorithm can be visualized as in Table 6, where yes and
no are mapped to 1 and 0 respectively. After encoding,
four unrelated binary classifiers are built and executed
independently for one-against-all algorithm. Correspond-
ingly, seven binary classifiers are constructed for ECOC
algorithm. For one-against-all algorithm, in 4-bit coding,
when one binary classifier is wrong, the algorithm will
make a mistake in the final results. For instance, suppose
an item belongs to class y1 and output of four binary clas-
sifiers is 1,0,1,0. Comparing it with the 4-bit coding list,
the algorithm can not correctly categorize the item
because the hamming distance between the item to y1 and
y3 is equal. For ECOC algorithm, in 7-bit coding, when an
error occurs in an independent binary classifier, the algo-
rithm can still properly identify the item by surplus infor-
mation. For example, suppose an item belongs to class y1
and the output of seven binary classifiers is 1, 1, 1, 1, 1, 0,
1. Comparing it with the 7-bit coding list, we can logically
draw a conclusion that the item belongs to y1 with maxi-
mal likelihood because the hamming distance between
the item and y1 is the shortest. Through this mechanism,
the ECOC algorithm can correct output error and improve
performance of classification for multi-class problems. In
our work, we established a combination classifier for TF
categorization based on one-against-all and ECOC algo-
rithms respectively, where SVM was utilized as basic clas-

sifier. Subsequently, performances of the one-against-all
and ECOC algorithm were assessed by the jackknife test.
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