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Genome-wide computational prediction
of transcriptional regulatory modules reveals
new insights into human gene expression
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The identification of regulatory regions is one of the most important and challenging problems toward the
functional annotation of the human genome. In higher eukaryotes, transcription-factor (TF) binding sites are often
organized in clusters called cis-regulatory modules (CRM). While the prediction of individual TF-binding sites is a
notoriously difficult problem, CRM prediction has proven to be somewhat more reliable. Starting from a set of
predicted binding sites for more than 200 TF families documented in Transfac, we describe an algorithm relying on
the principle that CRMs generally contain several phylogenetically conserved binding sites for a few different TFs.
The method allows the prediction of more than 118,000 CRMs within the human genome. A subset of these is shown
to be bound in vivo by TFs using ChIP-chip. Their analysis reveals, among other things, that CRM density varies
widely across the genome, with CRM-rich regions often being located near genes encoding transcription factors
involved in development. Predicted CRMs show a surprising enrichment near the 3� end of genes and in regions far
from genes. We document the tendency for certain TFs to bind modules located in specific regions with respect to
their target genes and identify TFs likely to be involved in tissue-specific regulation. The set of predicted CRMs,
which is made available as a public database called PReMod (http://genomequebec.mcgill.ca/PReMod), will help
analyze regulatory mechanisms in specific biological systems.

[Supplemental material is available online at www.genome.org.]

The regulation of gene expression is at the core of many impor-
tant biological processes such as cell growth, division, differen-
tiation, and adaptation to the extracellular environment. Gene
expression is regulated in large part at the transcription level,
with transcription factors (TFs) binding their specific DNA regu-
latory elements and activating or repressing transcription. The
identification and characterization of these DNA regulatory ele-
ments are among the most important and challenging tasks for
molecular biologists in the post-genome era.

TFs typically have an affinity for short, 5–15 bp, degenerate
DNA sequences. Decades of work in many laboratories have led
to the identification of consensus-binding motifs for hundreds of
these TFs. These binding motifs are generally represented by po-
sition-weighted matrices (PWM). In principle, examination of
the human genome with these PWM should allow for the iden-
tification of TF-binding sites (TFBSs), and hence, regulatory re-
gions; but the size of the genome, combined with the fact that
TF-binding motifs are short and degenerate, complicates this task
enormously. Indeed, these motifs can be found everywhere in
the genome and experiments have shown that only an extremely

small proportion represent bona fide TFBSs. The binding of a TF
is thus not simply a function of the theoretical affinity for a DNA
site, but also of a number of other factors like the chromatin
environment and the cooperation or competition with other
DNA-binding proteins. In higher eukaryotes, TFs rarely operate
by themselves, but rather bind to DNA in cooperation with other
DNA-binding proteins. The DNA footprint of this set of factors is
called a cis-regulatory module (CRM), which consists of a set of
TFBSs located in a DNA region of up to a few hundred bases
located in the vicinity of the gene being regulated. These mod-
ules have been the focus of much work recently (Davidson 2001),
particularly in the context of the gene regulation during devel-
opment (Howard and Davidson 2004), and are believed to be key
features of most transcriptional regulatory processes in mam-
mals.

Several features of known CRMs can be used to recognize
new modules as follows: (1) CRMs are generally composed of
several binding sites for a few different TFs; (2) CRMs, and in
particular the binding sites they contain, are generally more evo-
lutionarily conserved than their flanking intergenic regions, and
(3) genes regulated by a common set of TFs tend to be coex-
pressed. Different combinations of those characteristics have
been used, often in conjunction with PWM information, to pre-
dict regulatory elements for specific TFs. However, very few ex-
isting methods are designed to be applied on a genome-wide
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scale without prior knowledge about sets of interacting TFs or sets
of coregulated genes (the main exception being the regulatory
potential analysis of Kolbe et al. [2004] and King et al. [2005]). To
date, the general properties of human nonpromoter regulatory
regions indeed remain largely unexplored.

Here, we describe an algorithm that allows the identification
of about 118,000 putative CRMs, based on predicted sites of 229
families of human TFs (represented by 481 PWMs). We refer to
these regions as ‘‘predicted cis-regulatory modules’’ (pCRMs). To-
gether with the regions predicted for regulatory potential by
Kolbe et al. (2004), this constitutes the first genome-wide, non-
promoter centric set of human cis-regulatory modules, although
related studies have been reported for yeast (Segal et al. 2003) and
for human promoters (Bajic et al. 2004; Segal and Sharan 2005;
Robertson et al. 2006). More importantly, in the analysis our set
of pCRMs yields a number of novel insights into the mechanisms
of gene regulation. After experimental validation of some of our
predictions using a combination of chromatin immunoprecipi-
tation and DNA microarrays (ChIP-chip), we used these predic-
tions to explore the regulatory potential of the human genome.
We show that, despite the fact that our pCRMs undoubtedly
contain a significant number of false positives, the whole-
genome approach provides sufficient statistical power to formu-
late specific biological hypotheses. For example, (1) the CRM
density is unexpectedly high downstream of the 3� end of genes,
hinting at a possible involvement in regulating antisense tran-
scription; (2) the regions that are the densest in CRMs are asso-
ciated with developmental TFs; (3) different TF families have
binding sites that are enriched in different regions relative to
their target genes; (4) certain TFs or combination of TFs are as-
sociated with tissue-specific regulation. The Web-accessible data-
base that accompanies this study will prove useful to experimen-
tal biologists interested in the regulation of specific genes, and
will allow further bioinformatics and data-mining efforts.

Results and Discussion

Existing methods for cis-regulatory module prediction

The problem of computationally predicting cis-regulatory mod-
ules has been extensively studied in the last few years. Most pre-
dictive methods are either based exclusively on sequence data
(see below), but some attempt to take advantage of gene expres-
sion data (Segal et al. 2003; Ihmels et al. 2004; Kloster et al. 2005;
Wang et al. 2005) or DNaseI hypersensitivity data (Noble et al.
2005). Sequence-based algorithms have been developed along
several lines. In the most studied case, the promoters of a set of
(presumably) coregulated genes obtained from some prior experi-
ments is analyzed to identify overrepresented motif combina-
tions likely to be responsible for the gene’s coregulation (Wasser-
man and Fickett 1998; Krivan and Wasserman 2001; Aerts et al.
2003, 2004; Sharan et al. 2004; Thompson et al. 2004; Zhou and
Wong 2004; Gupta and Liu 2005; Segal and Sharan 2005). Other
approaches assume that the user provides a small set of transcrip-
tion-factor PWMs that are expected to co-occur in modules, and
identifies genomic regions densely populated in putative sites for
these TFs (Bailey and Noble 2003; Frith et al. 2003; Johansson et
al. 2003; Sinha et al. 2003, 2004; Alkema et al. 2004). None of
these two families of approaches are applicable in our setting,
where we do not have sets of coregulated genes to train from, and
where we have little prior knowledge about combinations of fac-
tors that are likely to co-occur to form modules.

To our knowledge, the only computational approach that
has been used for de novo, genome-wide prediction of regulatory
regions is the method of regulatory potential estimation from
Hardison’s group (Kolbe et al. 2004; King et al. 2005). This
method is trained to recognize sequence features and interspecies
conservation patterns that allow us to distinguish between
known regulatory regions and nonfunctional sequences. A com-
parison of the results obtained by this approach and ours is given
below.

A new algorithm for prediction of cis-regulatory modules

We designed a computational method with the goal of (1) iden-
tifying the DNA regions within the human genome that are
likely to be important for regulating gene expression and (2)
predicting what TFs are likely to bind these regions. Because our
interest does not lie on any specific TF or specific system, but
rather on having a global map of the regulatory elements of the
entire genome, we exploited the fact that PWMs representing
binding sites for a few hundreds of TFs have been described in
databases such as Transfac (Matys et al. 2003) and JASPAR (San-
delin et al. 2004). Our algorithm takes advantage of the fact that
regulatory regions often consist of clusters of binding sites for a
few different TFs and that they are more conserved than their
flanking intergenic DNA (Davidson 2001; Bulyk 2003; Levine
and Tjian 2003). Our approach, based on the detection of statis-
tically significant clusters of phylogenetically conserved TFBSs,
shares some of the features of algorithms previously proposed by
Sharan et al. (2004) and Aerts et al. (2004), but differs in that it
allows the detection of modules without prior knowledge regard-
ing which TFs are likely to be involved together in modules of
interest. Our method also shares some similarities with the word-
based approach of Philipakis et al. (2005), but uses a very differ-
ent approach to module scoring.

Our algorithm involves two steps (see Fig. 1 and Methods for
more details) as follows:

Figure 1. Overview of the CRM prediction algorithm. TFBS predictions
for different PWMs are shown with different geometric shapes and their
size indicates the score of the hit. Hits from individual species are com-
bined using a weighted average method to compute the “Aligned hits.”
The most significant (up to five) aligned hits are considered as “Tags” for
the corresponding region. The sum of the Tags scores is used to calculate
a “Module score” using a statistical significance estimation. This opera-
tion is performed for each position of the human genome, for sliding
windows of size 100, 200, 500, 1000, and 2000 bp.
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1. Identification and scoring of putative TFBSs using 481 Trans-
fac PWMs for vertebrate TFs (representing a total of 229 TF
families). To this end, each noncoding, nonrepetitive position
of the human genome within a human–mouse–rat align-
ment block (based on MULTIZ genome-wide alignments
[Blanchette et al. 2004]) was evaluated for its similarity to each
PWM using a log-likelihood ratio score with a third-order
Markov background model parameterized based on the local
GC content. Corresponding orthologous positions in mouse
and rat genomes were evaluated similarly and a weighted av-
erage of the human, mouse, and rat log-likelihood scores at
aligned positions was used to define a ‘‘hit score’’ for each
human genomic position and each PWM. The scoring method
favors simultaneous matches in all three species, which
greatly reduces the false-positive rate of predictions. Notice,
however, that the sites predicted need not be located within
large phylogenetically conserved regions, nor do they need to
be perfectly conserved across species.

2. Detection of clustered putative binding sites. Regulatory mod-
ules are often characterized by the presence of several binding
sites for each of a small number of TFs (Howard and Davidson
2004). We identified regions of, at most, 2 kb that are signifi-
cantly enriched in binding sites for one to up to five different
TFs. To assign a ‘‘module score’’ to a given region, the five TFs
with the highest total nonoverlapping scoring hits are chosen
as tags for the putative module, and a P-value is assigned to
the total score observed for the top one, two, three, four, or
five tags. The number of tags for a given module is chosen so
as to maximize the statistical significance of the hit density, so
a short region that would be dense in sites for one TF would
score well, as would a larger region with a few binding sites for
each of a handful of factors. The P-value computation takes
into consideration the number of factors involved (1–5), their
total hit scores, the overall genome-wide frequency of their
predicted hits, and the length and GC content of the region
under evaluation (see Methods).

Our algorithm was used to scan the regions of the human
genome that were alignable to the mouse and rat genome using
the MULTIZ program (Blanchette et al. 2004; these regions cover
34% of the human genome). This resulted in the identification of
118,402 predicted modules, covering 2.88% of the human ge-
nome. Taken as a whole, this set of pCRMs, although likely to
contain a non-negligible fraction of false positives, reveals a
number of properties of human gene regions.

Although we considered putative modules of size up to 2000
bp, 58% of the pCRMs are less than 500 bp long, with an overall
average length of 635 bp per CRM (see Supplemental Fig. S1A for
a size histogram). This size distribution is quite close to that of
the experimentally verified modules contained in the TRRD da-
tabase (Kolchanov et al. 2002). However, we cannot exclude the
possibility that some of the larger pCRMs are in fact made of
more than one biological CRM. Modules have, on average, 3.1
tags (see Supplemental Fig. S1B), with shorter modules usually
built from fewer tags than larger ones.

While the total number of individual sites predicted in
phase (1) of our algorithm varies significantly from one PWM to
another (see Supplemental Table S1), our procedure for correct-
ing for low-specificity matrices ensures that no PWM is chosen as
a tag too frequently. Supplemental Table S2 shows that tags are
not seriously biased toward particular matrices, a sign that our
algorithm for tag selection is sufficiently robust to avoid PWMs

with low specificity. The PWM chosen as a tag the most often
(5401 times, of 118,402 modules) is that for E2F, while the me-
dian PWM is selected as a tag in 704 modules. The PWMs that are
the most often chosen for tags fall under two categories. The first
is that of general promoter-associated factors, like E2F, ZF5, and
TBP, which are indeed expected to bind a large number of regu-
latory regions. The second set of common tags consists of ho-
meobox TFs (e.g., NKX family, POU family, etc.).

In silico validation of predicted modules

We evaluated the biological relevance of the pCRMs by measur-
ing the extent to which they overlap known regulatory elements
such as those compiled in the TRRD (Kolchanov et al. 2002),
Transfac (Matys et al. 2003), and GALA (Giardine et al. 2003)
databases. We also measured the overlap between the pCRMs and
other putative regulatory elements, such as “promoter” regions
(defined as the 1-kb region upstream of the transcription start
sites [TSS] of all known genes), CpG islands (based on the UCSC
Genome Browser annotation [Karolchik et al. 2003]), and DNaseI
hypersensitive sites (Dorschner et al. 2004; Sabo et al. 2004;)
from the Encode regions (Thomas et al. 2003). Figure 2A shows
that despite the fact that only about 2.88% of the genome be-
longs to pCRMs, our predictions contain about 40% of the bases
within modules annotated in GALA, 34% of the bases within
Transfac binding sites, and 20% of the bases within the TRRD
database. Our pCRMs are highly enriched within promoter re-
gions, especially those containing CpG islands. Indeed, when
considering the overlap between pCRMs and nonproximal (>1 kb
upstream) annotated regulatory regions, our sensitivity (Fig. 2C)
drops for all indicators except for the modules from the GALA
database, though all remain severalfold higher than expected by
chance (Fig. 2B,D). The significant enrichment for DNaseI hyper-
sensitive sites is particularly interesting, as those represent an
unbiased probing of chromatin structure. Although the function
of these hypersensitive sites remains in most cases undeter-
mined, many are likely to be CRMs.

By definition, the sensitivity of our method for detecting
annotated regulatory regions increases with the number of mod-
ules that are predicted. This increase is very rapid for the first
∼20,000 modules predicted, but the sensitivity for most indica-
tors then increases more slowly. This observation is likely due to
the fact that the modules that are the easiest to detect are those
located in promoter regions. These also turn out to be the regions
where most regulatory modules have been studied. However, the
fact that our most reliable indicators of performance (TRRD mod-
ules, GALA modules, and, to a lesser extent, hypersensitive sites)
continue to grow steadily after the first 20,000 pCRMs indicates
that nonproximal modules can still be identified, and justifies
considering a much larger set of modules.

Comparison to other genome-wide predictions

The ability of our algorithm to take advantage of interspecies
TFBS conservation contributes in good part to the accuracy of the
predictions. Indeed, the 34% of the human genome that lies
within an alignment block with the mouse and rat genome con-
tains 90% of bases within Transfac sites, 67% of those within
TRRD modules, and 87% of those within GALA regulatory re-
gions. Nonetheless, the sensitivity obtained by our pCRMs on
these indicators remains three to five times higher than what
would be obtained if modules were randomly predicted within
the alignment blocks. To measure more accurately the extent to
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which sequence conservation alone can be used to predict
known regulatory modules, sensitivity curves were computed
based on the noncoding interspecies conserved regions identified
by the PhastCons program (Siepel et al. 2005) (See Supplemental
Fig. S2). The sensitivity of pCRMs is consistently 30%–70%
higher than that of PhastCons elements for 1-kb “promoter” re-
gions and TRRD and GALA modules, while it is comparable for
Transfac and DNaseI hypersensitive sites. The advantage of pCRMs
over PhastCons is most marked when only the highest-scoring half
of each set of predictions is considered, in which case, the pCRMs
sensitivity is at least twice that of PhastCons for all indicators.6

Overall, 41% of the bases within pCRMs lie within a PhastCons
region (and 31% of PhastCons bases are within a pCRM), an
11-fold enrichment over what would be expected by chance.

Kolbe et al. (2004) and King et al. (2005) have developed a
method called “regulatory potential,” which has been applied to
the complete human genome to yield a set of CRM predictions.
The method is trained to identify sequence features and inter-
species conservation patterns that allow one to distinguish be-
tween a set of known regulatory regions and a set of nonfunc-
tional regions. The overlap between the regulatory regions pre-

dicted by King et al. and our pCRMs is
very significant—choosing a score
threshold that results in about the same
number of predicted bases as we get in
our pCRMs (2.88% of the genome);
more than 25% of the bases in pCRMs
are also in King’s regions (nine times
more than would be expected by
chance). The accuracy of the two sets of
predictions was compared based on the
set of known regulatory regions used
above, and none of the two methods ap-
pears significantly better than the other
(see Supplemental Fig. S2), despite the
fact that King’s method was trained on
some of the specific regulatory regions
used here for validation.

Experimental validation of predicted
modules
In order to further validate our pCRMs,
we took advantage of a technique called
genome-wide location analysis (or
ChIP-chip) (Ren et al. 2000; Iyer et al.
2001). This method allows for the large-
scale identification of protein–DNA in-
teractions as they occur in vivo. Briefly,
proteins are cross-linked to DNA by
treating live cells with formaldehyde
and specific protein–DNA complexes are
enriched by immunoprecipitation of
fragmented chromatin using antibodies
directed against a protein of interest. Af-
ter reversal of the cross-links, the en-
riched DNA fragments are identified by
hybridization onto DNA microarrays.
We selected modules predicted to be

bound by the estrogen receptor (ER), the E2F transcription factor
4 (E2F4), the signal transducer and activator of transcription 3
(STAT3), and the hypoxia-inducible factor 1 (HIF1) to print a
DNA microarray. The microarray contains 758, 1370, 860, and
1882 modules predicted to be bound by ER, E2F4, STAT3, and
HIF1, respectively. In the current study, the microarray was then
probed by ChIP-chip for ER and E2F4 (see Methods for experi-
mental details). After statistical analysis and experimental vali-
dation of the data (see Methods and Supplemental Table S3), we
have identified 55 and 433 modules bound by ER and E2F4,
respectively (see Supplemental Tables S4 and S5, respectively,
and Table S6 for full ChIP-chip results). Approximately 3% of the
758 ER-predicted pCRMs on the microarray actually proved to be
bound by ER, while 17% of the 1370 E2F4-predicted pCRMs on
the microarray were bound by E2F4.

These numbers need to be considered as an underestimation
of the actual specificity of the algorithm, since the protein–DNA
interactions were tested in a single cell type, while TFs are known
to regulate different sets of genes in different cell types, physi-
ological conditions, and time in development (Zeitlinger et al.
2003; Hartman et al. 2005). For example, ER was tested in MCF-7,
a breast cancer-derived cell line, due to its importance in breast
cancer. ER, however, also plays important roles in many tissues
such as ovaries, bone, brain, liver, and more. It is very likely that
ER binds many pCRMs in some of these tissues, but not in MCF-

6Since PhastCons was designed to detect any type of region under selective
pressure, many of its noncoding predictions are likely to have other nonregu-
latory functions.

Figure 2. Sensitivity and enrichment of pCRMs for various regions of interest. (A) Sensitivity of the
module predictions at varying score threshold, with respect to likely regulatory regions. Along the
y-axis is the fraction of the bases within known regulatory regions that are predicted to belong to a
pCRM. Along the x-axis is the number of predicted modules above a given threshold. Regions of
interest are: 1 kb upstream: regions upstream of the TSS of Known Genes (based on the UCSC Genome
Browser); Transfac sites: a set of 1209 experimentally verified binding sites from Transfac 7.2, mapped
onto the human genome; TRRD modules: a set of 601 experimentally verified regulatory modules from
the TRRD database; GALA modules: a set of 93 modules for the GALA database; CpG islands (based on
the UCSC Genome Browser annotation); 1 kb upstream: regions upstream of the TSS of Known Genes
that are not annotated as CpG islands; HS sites: a set of DNaseI hypersensitive sites from the Encode
regions. (B) The fold enrichment is computed as the ratio between the size of the intersection between
modules and regions of interest and the expected intersection size if modules were randomly posi-
tioned in the genome. (C,D) The analogous data, but restricting our attention to non proximal regu-
latory regions, i.e., those located more than 1 kb away from the TSS of the closest gene.

Genome-wide cis -regulatory module predictions

Genome Research 659
www.genome.org

 on July 17, 2006 www.genome.orgDownloaded from 

http://www.genome.org


7. In addition, the experiment was conducted under a single set
of conditions (concentration of estradiol, time of treatment,
etc.). For all of these reasons, it is difficult to determine the real
accuracy of the algorithm.

Because our microarray contains predicted modules for four
different TFs, the data can be used to assess the specificity of our
TFBS predictions, e.g., to evaluate whether our prediction of
which TFs should bind to each module is accurate. Among the 55
modules bound by ER, 44% (24/55, whereas 8/55 would be ex-
pected by chance) had indeed been selected for their ER-binding
sites, and among the 433 modules bound by E2F4, 54% (236/433,
whereas 147/433 would be expected by chance) had been se-
lected for that factor. In addition to false-positive ChIP-chip sig-
nals or the failure of the algorithm to detect some binding sites,
it is likely that binding of TFs through alternative mechanisms
such as protein–protein interactions contributes to this result.
For example, ER has been shown to be recruited to DNA by in-
teraction with AHR to repress AHR-dependent gene regulation in
an ER-responsive element-independent manner (Beischlag and
Perdew 2005). It is important to note that our algorithm can only
predict the binding of TF through direct DNA-binding interac-
tions. It is likely that other TFs, in addition to those predicted
here, may play roles in these modules. Of note, while 87% of the
validated pCRMs for E2F4 were located in promoter regions, only
20% of those for ER were in these regions, confirming that our
nonproximal pCRMs are also highly enriched for functional
CRMs. Finally, Carroll et al. (2005) have used ChIP-chip on a
tiling array to identify ER-binding sites on human chromosomes
21 and 22. Of the 57 regions they found to be bound by ER in
MCF-7 cells, 14 overlap our predicted modules (five times more
than expected by chance).

Despite the fact that the goal of this study is not to discuss
specific interactions, we would like to highlight an interesting
result that came out of the ChIP-chip experiments. While it is
well known that the expression of the progesterone receptor gene
PGR is up-regulated in breast cancer cells in response to estradiol,
the absence of consensus estrogen response elements (ERE) in the
two promoters driving its expression led to the suggestion that
ER binds via other TFBSs (Petz et al. 2004). However, our data
show that ER binds pCRMs present both ∼35 kb upstream of the
TSS and ∼5 kb downstream of the 3� end. Functional character-
ization of these pCRMs may reveal important clues about the
molecular mechanisms implicated in long-range regulation by
ER and other nuclear receptors (Carroll et al. 2005; Laganière et
al. 2005).

A global view of the gene regulatory landscape

Having validated our predictions, we went on using them to
study different global aspects of gene regulation. The genome-
wide distribution of predicted modules is exemplified by
Figure 3, which shows the pCRMs in a typical genomic region of
human chromosome 11 containing the progesterone receptor
gene PGR. The module density varies widely across the genome,
with an average of four modules per 100 kb and a maximum
of 44 modules per 100-kb window, covering from 0% to 55%
of such a region. The presence of pCRMs is significantly corre-
lated with the presence of a gene’s TSSs (correlation coeffi-
cient = 0.17, P-value < 10�308) on a local scale (10-kb window),
but on a larger scale (1-Mb windows), no such correlation is
observed. This indicates that the correlation between TSSs
and pCRMs only extends to a few kilobases (Fig. 3B), and that

distal pCRMs do not have strong location preferences relative to
TSSs.

As illustrated in Figure 3, some regions are rich in modules,
but relatively poor in genes. In some cases, this could reflect the
presence of many unknown protein-coding genes, or at least of
many alternative TSSs. Another possible explanation is that some
of these modules may be regulating the transcription of noncod-
ing transcripts. Cumulating evidence indeed shows that much
more transcription happens in the genome than what can be
accounted for by traditional genes (Cawley et al. 2004; Cheng et
al. 2005; The FANTOM Consortium 2005). Finally, this observa-
tion may be due to the presence of long-range enhancers, which
may affect transcription of genes up to several hundreds of kilo-
bases away (Bejerano et al. 2004; Baroukh et al. 2005; Woolfe et
al. 2005). Clearly, a sizeable fraction of the module predictions is
likely to be false positives, but there are no a priori reasons to
expect false-positive predictions to cluster in any particular re-
gions of the genome.

The genomic locations that are the densest in predicted
modules (measured over 100-kb windows) are listed in Table 1.
Most of these are located upstream, in the introns, or down-
stream of genes that are themselves TFs often involved in devel-
opment. Among the 15 densest regions, we find parts of all four
HOX clusters that operate differential genetic programs along the
anterior–posterior axis of animal bodies (Alonso 2002), and re-
gions near the EBF3, ZFHX1B, NR2F2, BCOR, MEIS2, and DLX5-6
genes, all of which are characterized TFs. The pCRMs in these
regions have the unusual property of often being significantly
conserved back to zebrafish and fugu, an indication that they
may be part of the core regulatory mechanism of vertebrate de-
velopment. There are 137 100-kb regions covered at least at 20%
of CRMs, and these regions contain the TSSs of 115 genes with
GO annotations (Harris et al. 2004). These genes are very strongly
enriched for involvement in the regulation of transcription (79
genes, P-value 10�89), morphogenesis (24 genes, P-value 10�13),
organogenesis (17 genes, P-value 3 � 10�5), and neurogenesis
(10 genes, P-value 4 � 10�4), based on the Gostat program
(Beissbarth and Speed 2004). We conjecture that genes involved
in these processes often require very tight regulation, which in
turn requires an elaborate set of regulatory modules. Notably,
the presence in that group of ZBTB20, a poorly characterized
gene encoding a predicted zinc finger TF, suggests the intriguing
possibility that this TF may have a critical biological role, perhaps
in regulating development.

There also exist regions that are very sparsely populated in
predicted modules. One of the most striking examples is a 4-Mb
region of chromosome 2 (chr2:123,000,001–127,000,000), of
which <0.1% is covered by predicted modules. The region is
somewhat of a gene desert, containing only one large gene an-
notated, hypothetical gene CNTNAP5. Other gene deserts are the
opposite, quite rich in pCRMs. Many of those appear to be lo-
cated in the vicinity of developmental TFs. For example, the ho-
meobox gene MEIS1 is surrounded by a 1-Mb region devoid of
any other TSS, but contains >130 kb of pCRMs.

Regulatory modules are preferentially located in specific
regions relative to genes

We studied the position of pCRMs with respect to their closest
gene. The genome was divided into several types of noncoding
regions, i.e., upstream of a gene, 5� UTR, 1st intron, internal
introns, last intron, 3� UTR, and downstream region. Within
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each type of region, we computed the fraction of bases included
in a pCRM as a function of the distance to a reference point for
each type of region (e.g., for upstream regions and 5� UTR, the
reference point is the TSS; see legend of Figure 4 for more details).
This positional distribution was also compared with the posi-
tional distribution of a set of interspecies-conserved regions iden-
tified by the phastCons program (Siepel et al. 2005) on a set of
aligned vertebrate genomes, using a conservation score threshold
that results in a total number of noncoding bases predicted to be
the same as the number of bases within pCRMs.

From Figure 4, a number of striking observations are pos-
sible as follows:

1. Regions immediately surrounding TSSs are highly enriched for
predicted modules. This was to be expected as this region of-
ten contains the promoter of the gene. More surprising is the
presence of modules immediately downstream of the TSSs (ei-
ther in the 5� UTR or the first few kilobases of the first intron).
These may represent alternative promoters for initiation
downstream from the annotated transcripts. Alternatively,
they may represent a yet underappreciated mode of activation
that would take place from downstream proximal binding sites.

2. Regions surrounding the sites of termination of transcription
are also highly enriched for modules. 3� UTRs are essentially as
enriched as 5� UTRs for pCRMs, and module enrichment con-

tinues several kilobases past the end of the transcript, though
to a lesser degree than in the upstream regions. At least two
reasons may explain the presence of regulatory elements in
the 3� region of genes. First, these may represent enhancer
type of regulatory elements that activate the upstream gene
via a DNA-looping mechanism. Second, these may represent
promoter elements driving noncoding transcript, antisense
relative to the coding gene. Such antisense transcripts may
regulate gene expression by a post-transcriptional mechanism
(Cawley et al. 2004). Alternatively, these transcripts (or this
transcription) may have biological roles of their own, inde-
pendently of the coding transcript itself. For example, recent
work in yeast showed that intergenic transcription could regu-
late gene expression by interfering with activation of a neigh-
boring gene (Martens et al. 2004). It is possible that these
TFBSs in the 3� region of genes could give rise to antisense
transcription that would interfere with sense transcription
(Katayama et al. 2005). Recent analysis of the transcriptome of
mammalian genomes revealed that a large proportion of all
transcripts detected represent noncoding transcription
(Kapranov et al. 2002; Cheng et al. 2005; The FANTOM Con-
sortium 2005). Many of these noncoding transcripts map to
the 3� UTR of coding transcripts. ChIP-chip experiments per-
formed on chromosome 21 and 22 (Cawley et al. 2004) have
revealed that TFs can indeed bind these regions with a fre-

Figure 3. Distribution of pCRMs along a region of chromosome 11. (A) A 10-megabase region from chromosome 11 is shown (coordinates 99, 308,
463–109, 308, 463). The position of the pCRMs (red) and the known genes (blue, from the UCSC Genome Browser) is shown. (B) A zoom in a
350-kilobase region containing the progesterone receptor gene (PGR) (coordinate 100, 400,000–100,750,000). The pCRM marked with an asterisk are
those printed on our DNA microarray. (C) The composition of the Module M16589 is depicted as can be found in the PReMod database accompanying
this study (http://genomequebec.mcgill.ca/PReMod). The position of the hits for five TRANSFAC matrices chosen as tags for this module is shown
together with their individual scores.
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quency higher than expected. These experimental data on
chromosomes 21 and 22 are in agreement with our genome-
wide predictions and likely reflect a yet understudied aspect of
gene expression regulation.

3. Another surprising observation is that the density of modules
is the lowest in regions located 10–50 kb upstream of the TSS
and, symmetrically, 10–30 kb downstream of the end of tran-
scription. This is unexpected, as one would expect that these
regions (at least those upstream of the TSS) would be prime
estate for transcriptional regulation. However, this is con-
firmed by the density of interspecies conserved elements,
which is also at its lowest in those regions. We believe that this
can be explained as follows: Thanks to their relative proximity
to the TSS, regulatory elements in these regions may be al-
lowed to contain fewer binding sites (or binding sites with less
affinity), making them difficult to detect using our method.
Alternatively, these regions may actually be depleted for regu-
latory elements. This could be due to constraints imposed by
the chromatin structure of the nuclear architecture, making it
more difficult for the DNA of these regions to come in physi-
cal proximity to the TSS. After the first 50 kb upstream of the
TSS, the density of modules (and, to a lesser extent, of con-
served regions) starts increasing with the distance to the TSS,
with regions located >200 kb upstream of the TSS, being about
50% more densely populated in modules than the –50 to –10
kb region. We believe that this may be explained by the fact
that regulatory modules that are located very far from the
gene they regulate would often require many strong binding
sites, making their computational detection easier. The sym-
metric effect is observed in regions downstream of genes, al-
though at these large distances it is unclear whether these
modules would regulate the sense or antisense transcription.

4. The density of predicted modules in intronic regions is very
low in the close vicinity of exons (except the first and last
ones), but increases with the distance to the closest exon.
Although some of the intronic pCRMs may turn out to be
splicing regulatory regions, this is unlikely to be the case for a
large fraction of them, as intronic splicing elements usually
cluster near exon boundaries (Sorek and Ast 2003). Instead, we
speculate that CRMs within these very large introns may be
located in genes that require tighter transcriptional regula-
tion, resulting in a higher module density in these regions.

5. Although the module density usually follows closely the in-
terspecies conservation density, a few notable exceptions in-
dicate that our module predictions are doing more than
merely detecting conserved regions. First, the regions sur-
rounding the TSS (on either side) are much richer in modules
than in conserved regions. Second, the 1-kb regions immedi-
ately flanking internal exons tend to be highly conserved
(Sorek and Ast 2003) and they are believed to be involved in
splicing regulation. However, these regions are depleted from
pCRMs, as indeed these regions are not involved in transcrip-
tional regulation and lack the signature sought by our algo-
rithm. As a side note, pCRMs are also twofold depleted in
known RNA genes, although these too tend to be well con-
served evolutionarily.

Specific TFs target different regions relative to their target
genes

As described above, our predictions, when taken altogether, are
enriched in the 5� and 3� region of known genes. When broken
down into predictions for individual TFs, however, a great vari-
ability in observed. For example, our predictions of ER modules

Table 1. Human genomic region densest in predicted CRMs

Regiona #CRMsb Genomic location Gene annotationc Main gene functionc

chr12:52600000–52700000 44 (55%) HOXC cluster Homeobox TFs Anterior-posterior differentiation during
development

chr7:26900000–27000000 44 (54%) HOXA cluster Homeobox TFs Idem
chr10:131500000–131600000 43 (44%) Up., intron, and down. of

EBF3
COE-type TF Regulation of development

chr17:44000000–44100000 37 (42%) HOXB cluster Homeobox TFs Anterior-posterior differentiation during
development

chr7:96200000–96300000 35 (34%) DLX5-DLX6 intergenic
region

Homeobox TFs Central role in development of several
structures

chrX:39700000–39800000 35 (43%) Up. and 1st intron of BCOR Transcription corepressor BCL6 repressor
chr2:176800000–176900000 34 (47%) HOXD cluster Homeobox TFs Idem
chr3:115600000–115700000 34 (36%) Introns of ZBTB20 Zing-finger BTB/POZ TF Possibly involved in hematopoiesis,

oncogenesis, and immune responses
chr2:145000000–145100000 33 (41%) Up. and introns of ZFHX1B Zinc-finger BTB/POZ TF Transcription inhibitor, interacting with

SMAD proteins
chr15:94600000–94700000 33 (38%) Up. intron, and down. of

NR2F2 (COUP-TFII)
Nuclear hormone

receptor, zinc-finger
TF

Regulation of Notch signaling and vein
identity

chr11:114600000–114700000 32 (36%) Introns of IGSF4 Immunoglobulin-like
domain

Intercellular adhesion molecule; Involved
in human oncogenesis

chr11:114800000–114900000 30 (34%) Up. and intron of IGSF4 Immunoglobulin-like
domain

Intercellular adhesion molecule; Involved
in human oncogenesis

chr15:35100000–35200000 29 (37%) Up. and introns of MEIS2 Homeobox TF Essential contributor to developmental
programs

chr12:52700000–52800000 28 (34%) Beginning of HOXC cluster Homeobox TFs Anterior-posterior differentiation during
development

Human regions with the highest concentration of predicted regulatory modules, computed over windows of 100 kb.
aHuman genome coordinates (build 34).
bNumber of pCRMs predicted and percentage of the region they cover.
cBased on the UCSC Genome Browser Known Gene track information and PubMed literature searches.
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(e.g., modules predicted to contain at least one high-scoring ER-
binding site) are enriched in regions located more than 10 kb
upstream of known genes, while our predictions for E2F4 are
enriched in the proximal 5� region of known genes. This suggests
that ER functions mainly through distal, enhancer-like elements,
while E2F4 regulates gene transcription via promoter-proximal
elements. Notably, evidence in the literature supports this hy-
pothesis (see Blais and Dynlacht 2005; Carroll et al. 2005). Im-
portantly, our ChIP-chip data also supports this model. Indeed,
despite the fact that pCRMs printed on the array were uniformly
distributed with respect to genes, only 20% of the pCRMs bound
by ER in our ChIP-chip experiments were within 1 kb on either
side of the TSS, while the proportion is of 87% for the pCRM
bound by E2F4. Based on this observation, we have computed
the location preferences of each of the 229 TF families repre-
sented by the PWMs used in our predictions (see Figure 5 and
Supplemental Table S7). Figure 5 shows that more than 70 of the
229 TFs families considered exhibit a significant enrichment for
one or more types of genomic regions (see Methods). These TFs
separate quite clearly into two groups with very little overlap. A
number of TFs show preference for distal positions, mostly those
located more than 100 kb upstream of the TSS, and are also often
enriched within introns. This set of TFs is enriched for factors
containing homeo domains or basic helix-loop-helix domains

and are often involved in regulating development. Some of these
factors have indeed been shown to bind distal modules and ac-
tivate transcription during early development (Bejerano et al.
2004; Woolfe et al. 2005). Notably, we find no TFs enriched for
introns only (except within 1 kb downstream of the TSS), which
indicates that regulatory modules located in introns are of the
same type as those located far away from genes. In fact, it is likely
that certain intronic modules do not regulate the gene in which
they are located, but rather another gene located nearby, as re-
ported recently for sonic hedgehog (Sagai et al. 2005)

A second set of TFs preferentially binds within 1 kb of the
TSSs. This set is enriched for leucine zipper TF and factors from
the Ets family. Notably, most of these factors, contrary to what is
observed for those binding distal sites, are involved in basic cel-
lular functions. Among the best-known examples we found NF-
Y, E2F, CREB, ATF, and others. Interestingly, and much to our
surprise, most of these TFs show a clear preference for either the
1 kb upstream or the 1 kb downstream of the TSS, but not both.
The most striking example is Nuclear Factor Y (NF-Y), which is
highly enriched 1 kb upstream, but highly depleted 1 kb down-
stream of the TSS. This preference may reflect a mechanistic char-
acteristic of these TFs. Finally, note that when we computed en-
richment statistics based on all genome-wide predicted TFBSs in-
stead of based only on those located in modules, much fewer
TFs obtained significant enrichment in any given type of region,
indicating that our pCRMs are effective at reducing the false-
positive rate in TFBS predictions.

Long-range correlation of TFBS predictions

We observe that the closer together two modules are on the ge-
nome, the more likely they are to contain predicted binding sites
for the same factors. Part of this is simply due to isochors, those
broad variations of GC content along the genome (International
Human Genome Sequencing Consortium 2001). However, even
after correcting for this factor (see Methods), a number of TFs
show significant long-range correlation between their predicted
sites (Supplemental Fig. S3; Supplemental Table S8). This is likely
to be due to the fact that if several regulatory modules regulate a
gene, they are likely to be bound by a similar set of TFs. Not
surprisingly, most of the TFs that exhibit long-range correlation
are those that show preferences for binding sites located more
than 10 kb upstream of the TSS. The set of nearby pCRMs that
contain binding sites for similar TFs tends to be located in large
intergenic or intronic regions and they tend to be located near
genes encoding TFs.

Predicted TFBSs induce correlated tissue-specific gene
expression

Comparison of TF-binding data with gene expression data in
yeast showed that genes bound by a common set of TFs tend to
be coregulated (Lee et al. 2002). Such a correlation is expected to
occur in mammalian cells as well, but was never thoroughly
tested because of the lack of genome-wide data for TF binding.
Our predicted module data allows us to investigate this question.
For each TF family in our study, a set of putatively regulated
genes was identified as those with at least one predicted high-
scoring site in a pCRM located within 10 kb upstream of the TSS.
We computed the average pairwise Pearson correlation coeffi-
cient between tissue-specific expression levels of the genes of the
set using expression data from 79 human cell types or tissues
from the GNF Atlas 2 (Su et al. 2004). A total of 27 of the 229 TF

Figure 4. Distribution of pCRMs relative to specific regions of genes.
The genome was divided into several types of noncoding regions: up-
stream of a gene (dark blue), 5� UTR (pink), 1st intron (yellow), internal
introns (light blue), last intron (brown), 3� UTR (aqua), and downstream
region (dark blue). (A) For each type of region, the fraction of bases
included in a pCRM is graphed as a function of the distance to a reference
point. For upstream regions, 5� UTR, and first intron the reference point
is the gene’s TSS. For middle introns the closest 5� or 3� intron boundary
is used. For the last intron, the 3� UTR and the region 3� of the last exon,
the 3� end of the mRNA is used. Note that the 3� UTR is off the scale in
A. (B) Same as in A, but different scales are used for the x- and y-axes in
order to better show the characteristics of all regions.
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families are associated to a significant expression correlation (P-
value < 0.01, false-discovery rate (FDR) = 8%; see Supplemental
Table S9). We repeated our correlation analysis, this time mea-
suring the expression correlation for genes sharing binding sites

for pairs of TFs. Of the 26,106 pairs of TF
families considered, 595 are associated
to a significant expression correlation (P-
value < 0.01, FDR = 43%) (See Supple-
mental Table S10 for a complete list). For
example, most of the 20 genes that have
a pCRM containing OCT-1 and BACH1-
binding sites are highly expressed in
various brain tissues, excluding the cer-
ebellum and the olfactory bulb, and in
the pituary gland. While the role of
OCT-1 in brain cells has already been
characterized (Givens et al. 2004), its as-
sociation with BACH1 has not been re-
ported before.

Since most TFs are only expressed
in a subset of the 79 cell types consid-
ered, they are unlikely to induce signifi-
cant coexpression when measured over
all 79 cell types. In order to identify tran-
scription factors regulating expression in
specific cell types, we analyzed each pair
of TF and cell type. For each pair, the
average expression level of the genes as-
sociated with predicted binding sites for
the TF was computed and its signifi-
cance assessed by a permutation test. Of
the 229 � 79 = 18,091 possible (TF-cell
type) pairs, we found 119 where genes
are overexpressed (P-value < 0.001,
FDR = 15%), and 78 where genes are un-
d e r e x p r e s s e d ( P - v a l u e < 0 . 0 0 1 ,
FDR = 23%). Table 2 lists the pairs with
the most significant associations (see
Supplemental Table S11 for the com-
plete list). For example, the genes asso-
ciated with pCRMs for MyoD tend to be
highly expressed in skeletal muscle cells,
while those associated to Ets are highly

expressed in white blood cells. Both the role of MyoD in skeletal
muscles and that of Ets in blood cells are very well characterized,
thereby validating the approach.

We also discovered associations that are not well character-

Figure 5. Many TFs preferentially bind to specific regions relative to the TSS of their target genes. A
heat map of the enrichment (represented as a Z-score) of a TF for different regions relative to TSSs is
shown. Regions in red are highly enriched for binding sites for the given TF, while those in blue are
depleted. The regions shown on the x-axis are as follows: >100kb upstream, pCRMs located more than
100 kb upstream from a TSS; 10–100kb upstream, pCRMs located >10 kb, but <100 kb upstream from
a TSS; 1–10kb upstream, pCRMs located >1 kb but <10 kb upstream from a TSS; 0–1kb upstream,
pCRMs located within 1 kb upstream of a TSS; 1kb 1st intron, intronic pCRMs located within 1 kb
downstream of the TSS of a gene; 10kb 1st intron, intronic pCRMs located within 10 kb downstream
of a TSS; intron, intronic pCRM located >10 kb from the TSS; 0–1kb down, pCRM located within 1 kb
from the 3� end of a gene; 1–10kb down, pCRM located >1 kb but <10 kb downstream from the 3� end
of a gene. See Methods for details on the computation of Z-scores.

Table 2. Tissue-specific expression for genes predicted to be regulated by various types of transcription factors

TRANSFAC matrices Tissues with high expressiona Tissues with low expressionb Evidence from the literature

ETS, NRF2, ELK1, PEA3, PU1 White blood cells (Dentritic, NK, B,
and T cells)

Most brain tissues Reviewed in Sharrocks (2001)

MyoD Skeletal muscle Lung Reviewed in Tapscott (2005)
NF-Y, CCAAT-box Thymus, leukemia lymphoblastic, B

lymphoblasts
Ciliary and superior cervical ganglions Reviewed in Mach et al. (1996).

See also Mantovani (1999)
AP-4 Various brain tissues Leukemia lymphoblastic No evidence found
Ahr/Arnt Most brain tissues Pravettoni et al. (2005)
Areb6 Fetal thyroid, salivary gland, trachea No evidence found
NERF-1A Subthalamic nucleus Bone marrow, heart, lung, kidney, liver No evidence found
NF-kappaB Tonsil, lymphoblasts, Burkitts

lymphoma, smooth muscle,
Thalamus Reviewed in Viatour et al. (2005)

COUP-TF/DR1 Kidney, liver, tongue Kerber et al. (1998)
SREBP Fetal brain Reviewed in Medina and

Tabernero (2002)
MZF1 Kidney, liver Lantinga-van Leeuwen et al. (2005)

aTissues expressing high level of putative target for the given TF.
bTissues expressing low level of putative target genes for the given TF. See Methods for details.
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ized. For instance, we found that genes around pCRMs for NF-Y
tend to have low expression in the ciliary and superior cervical
ganglia and high expression in thymus and lymphoblasts. NF-Y
binds an element called the CCAAT box, which has been re-
ported to be present within promoters of genes activated during
peptide presentation in antigen presenting cells (APC) (Mach et
al. 1996) and within the promoters of housekeeping genes such
as those regulated during the cell cycle (Mantovani 1999). From
this literature, one would not have predicted a role for NF-Y in
the brain and the thymus, but the fact that ciliary and ganglia
cells are not (or only slowly) dividing and that some APC origi-
nate from thymus (Choi et al. 2005) is however consistent with
our findings.

The average expression levels were also computed for the set
of genes associated with each pair of TFs. Of the roughly 2 mil-
lion triplets (TF1, TF2, cell-type) tested, 5242 triplets show signifi-
cant overexpression (P-value < 0.001, FDR <39%), while 6407
triplets show significant underexpression (P-value < 0.001, FDR
<31%; see Supplemental Table S12).

A searchable public database of predicted regulatory modules

The modules predicted by the algorithm were stored in a data-
base with a Web-based interface (http://genomequebec.mcgill.
ca/PReMod). The database supports a variety of queries and con-
tains hyperlinks pointing to the NCBI Entrez of the closest gene.
The module information includes its genomic position as well
as its TFBS content. A graphical view of the TFBS distribution of
the highest scoring matrices is also provided (see, for example,
Fig. 3C). Queries can reveal relationships such as the set of mod-
ules associated with a specific matrix, the set of modules located
in the vicinity of a gene of interest, the set of the modules located
within a specific distance from any gene, the set of modules
associated with CpG islands, etc. Output from queries can be
viewed as html or Excel tables. Genomic sequence of the whole
set of modules can also be downloaded in fasta format from the
Web site.

Conclusions

Using the literature as a guideline, we have identified a set of
rules describing the architecture of DNA regulatory elements and
used them to build an algorithm allowing us to explore the regu-
latory potential of the human genome. Although the error rate in
CRM predictions is likely to be relatively high, the statistical
power obtained through a large-scale, genome-wide approach re-
vealed new insights into the biology of transcriptional regula-
tion. Among other things, we observe a strong enrichment for
pCRMs in regions at the 3� end of genes. By concentrating on
predicted TF-binding sites within pCRMs, we are able to improve
the specificity of individual TFBS predictions, which allows the
detection of signals that could not be seen otherwise. For ex-
ample, we noted that a significant number of TFs have a strong
bias for regulating genes either from a great distance or from
promoter-proximal binding sites. Noteworthy is the fact that
most TFs that preferentially work from a large distance are in-
volved in development, while those predicted to work from pro-
moter-proximal sites tend to regulate genes involved in basic
cellular processes. We have identified a set a TFs that are pre-
dicted to play important roles in specific tissues, including cells
and tissues issued from tumors and metastases. Finally, our data
provides a starting point for the elaboration of human gene net-
works.

In a bootstrap-like fashion, several of the features derived
from our pCRMs could be used to design improved CRM predic-
tion algorithms. For example, the fact that specific TFs prefer
binding at specific locations with respect to genes and that CRMs
tend to organize in larger and looser clusters often containing
binding sites for similar sets of factors could allow improved pre-
dictions.

We expect that the database containing the modules pre-
dicted in this study may speed up the discovery and experimental
validation of CRMs. Finally, deeper data-mining approaches are
likely to yield a plethora of specific testable biological hypotheses.

Methods

Transfac position weight matrices
A set of 481 vertebrate PWMs from Transfac 7.2 (Matys et al.
2003) was used for the analysis. Pseudocounts were introduced to
regularize matrices based on few known sites (Durbin et al. 1998).
Many PWMs represent the same or very similar factors. This does
not cause any problem to our CRM prediction algorithm (since it
excludes overlapping sites), but it is undesirable for downstream
analyses of individual TF properties, e.g., localization with re-
spect to the genes and tissue-specific expression. For these sec-
tions of the study, PWMs were grouped into 229 families based
on the following rule: If many related TFs had individual PWMs,
but Transfac also contained a generic PWM for the family, then
only that generic matrix was used.

Module prediction algorithm
The outline of our module prediction algorithm is provided in
Figure 1. We used a genome-wide multiple alignment of the hu-
man, mouse, and rat genomes (versions hg16, mm3, and rn2)
produced by the MULTIZ program (Blanchette et al. 2004) and
available from the UCSC Genome Browser (Karolchik et al.
2003). Only regions within MULTIZ alignment blocks are con-
sidered in what follows. These regions cover 34% of the human
genome. For each of the 481 PWMs, individual binding sites are
first predicted as follows. The human, mouse, and rat genomic
regions are first scanned separately, on both strands, and a log-
likelihood ratio score is computed in the standard way (Durbin et
al. 1998). The only improvement is that we use a set of 3rd-order
Markov models for background, and the choice of model de-
pends on the local GC-content of the 1-kb region surrounding
the position. Twenty different Markov models have been trained,
based on nonrepetitive, noncoding human genomic regions with
0%–5% GC, 5%–10% GC, 95%–100% GC, and at every position
the most appropriate background model is used.

Species-specific scores are then mapped onto the alignment
and for each alignment column p and PWM m, we compute:
h i t S co re a l n (m,p ) = h i t Sco re H u m (m,p ) + 1 /2 max(0 ,
hitScoreMou(m,p) + hitScoreRat(m,p)). Thus, hitScorealn(m,p) will
be high if all three species have a high-scoring site at position p.
Notice that if the hit score of human is very high, the resulting
hitScorealn may be relatively good even if mouse and/or rat do
not have high-scoring hits at that position. This allows us to
predict human-specific binding sites, provided that they are very
good matches to the PWM considered. Once the alignment scan
is completed, only positions with hitScorealn(m,p) > 10 are re-
tained to construct modules. This results in a total number of
predicted sites that varies from 1.5 million for E2F (M00103) to
about 8000 for Hogness (M00316), many of which are expected
to be false positives (see Supplemental Table S1).

We now discuss how to compute moduleScore(p1...p2) for
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the alignment region going from position p1 to p2 of human. We
first define TotalScore(m, p1...p2) to be the sum of the hitScoresaln

of all nonoverlapping hits for m in the region p1...p2. Formally,
letting Hm be the set of all hits for matrix m in region p1...p2,
we have TotalScore(m,p1...p2) = max {H ⊆ Hm s.t. hits in H do not overlap}

�h ∈ H hitScore(m,p).
The optimization problem of choosing the best set of

nonoverlapping hits is solved heuristically, using a greedy algo-
rithm that iteratively selects the hit with the maximal score that
does not overlap with the other hits previously chosen. For each
matrix and each region, a P-value is assigned to the TotalScore
observed, measuring the probability that a random region of the
human–mouse–rat alignment would have a total score that
would exceed the observed one. This P-value takes into consid-
eration the length and GC-content of the region considered, as
well as the overall frequency and score distribution of hits pre-
dicted for that matrix in the genome. This allows for a region
dense in hits for a rare matrix (i.e., one with few hits in the
genome) to obtain a higher score than a region equally dense in
hits for a more common matrix. Matrices that tend to have a
large number of hits throughout the genome are thus penalized.
More precisely, for each matrix m, GC-content g and window
length l, the distribution of TotalScore is estimated empirically
through simulation, repeating 10 million times the following
procedure: (1) choose l random positions from alignment regions
with GC-content g and (2) compute the TotalScore of the set of
positions selected, assuming that the l positions chosen form a
contiguous region.

The score of a candidate module is computed based on
one to five PWMs called tags. The first tag for region p1...p2

is the matrix with the most significant TotalScore, i.e.,
tag1 = argminm∈PWMs pValue(TotalScore(m,p1...p2)). The regions
belonging to the hits selected for tag1 are then masked
out and the TotalScores for each matrix are recomputed, ex-
cluding hits overlapping those of tag1. The second tag is then
the matrix that achieves the most significant totalScore, and
its occurrences are masked out. The process is repeated un-
til five tags are selected, if possible. Finally, we define
moduleScore(p1...p2) = max{k = 1...5} –log (pValueMaxUnif (k, 481,
∏i =1...k pValue(totalScore(tagk, p1...p2)))), where pValueMax-
Unif(k, 481, a) is the probability that the product of k random
variables, each defined as the maximum of 481 uniform(0,1) ran-
dom variables, is smaller than a.7 A module can thus consist of
one to five tags, depending on which number of tags yields the
highest statistical significance.

The above procedure was used to search for modules of
maximal length 100, 200, 500, 1000, and 2000bp.8 For each win-
dow size, regions with moduleScore > 10 (i.e., P-value < e�10)
were identified. This choice of threshold is somewhat arbitrary,
but results in a total number of bases predicted in pCRMs to be
∼2.88% of the genome, a reasonable upper bound for the frac-
tions of bases in regulatory regions. To address the fact that many
of these modules overlap each other, a greedy algorithm was used
to repeatedly select the highest-scoring module not overlapping

any of the previously selected higher-scoring modules. This re-
sulted in the set of 118,402 nonoverlapping modules studied in
this work. Predictions were then mapped onto the latest human
assembly (hg17) using the liftOver program (Karolchik et al.
2003; <0.1% of modules could not be mapped onto the new
assembly and were discarded).

Microarray design and production
A subset of the pCRMs was selected to build a microarray to be
used for ChIP-chip validation experiments. For each TFs among
ER, HIF1, STAT3, and E2F4, at most 50 pCRMs were randomly
selected for each combination of the following categories: (1)
module score: High vs. non-high; (2) totalScore for the given TF:
High vs. non-high; (3) genomic location with respect to closest
TSS: 10–100 kb upstream, 800 bp–10 kb upstream, -800 to +200
bp, +200 bp to +1000 bp, +1 kb to +10 kb, 0–10 kb downstream
of 3� UTR, or other. Most combinations could be not filled up to
their quota. Each pCRM selected was extended symmetrically to
a size of 1 kb, excluding repetitive regions. Primer pairs were
designed for each region, using the Primer3 algorithm (Rozen
and Skaletsky 2000), and the specificity was tested in silico by
using a virtual PCR algorithm (Lexa et al. 2001). When the primer
pair gave no satisfactory virtual PCR results, a new primer pair
was designed by using Primer3 and tested again. The process was
iterated three times to generate primer pairs predicted to be effi-
cient to amplify regions from human genomic DNA for almost all
of our selected pCRMs. This primer design pipeline allowed us to
design primer pairs to amplify pCRMs from human genomic
DNA with a success rate of ≈85%.

ChIP-chip assay and data analysis
ER ChIP-chip experiments were performed as described previ-
ously (Laganière et al. 2005). E2F4 ChIP-chip experiments were
performed as follows: T98G cells (ATCG) were grown in DMEM
containing 10% FBS and arrested through contact inhibition by
allowing cells to reach confluence. Medium was changed after
the second day of confluence and cells harvested on the third
day. Confluent T98G cells were fixed with 1% formaldehyde,
rinsed twice with PBS, and harvested. The cell pellet was lysed
and sonicated to obtain DNA fragments of 600 bp on average.
ChIP was performed using anti-E2F4 antibody (sc-1082, Santa-
Cruz) and Dynabeads (Dyna). ChIP samples and nonimmuno-
precipitated fragments were blunted with T4 DNA polymerase
and ligated to unidirectional linkers. The DNA was then ampli-
fied by LM–PCR and labeling carried out post PCR by incorpora-
tion of Cy5 or Cy3-dUTP using Klenow polymerase reaction. De-
tail protocol can be found at http://www.ircm.qc.ca/microsites/
francoisrobert/en.

Data were normalized and triplicates were combined using a
weighted average method as described previously (Ren et al.
2000). The P-value threshold used for the analysis was estab-
lished by testing the enrichment of 10 targets for each of the
following P-value intervals for both ER and E2F4 ChIPs using
quantitative PCR with SYBR Green: <0.001, 0.001–0.005, 0.005–
0.01, 0.01–0.05, 0.05–0.1, 0.1–0.5, 0.5–1. The results of this vali-
dation process are shown in Supplemental Table S1. Using
P < 0.01 (ER) and P < 0.1 (E2F4), virtually all targets are bona fide
binding sites (see Supplemental Tables S2 and S3). All microarray
data will be deposited to ArrayExpress.

Statistical significance of TF location preferences and spatial
correlation
We used a permutation test to estimate the statistical significance
of the observed number of binding sites predicted in each type of

7Note that the formula for moduleScore is actually an approximation of the
true P-value, for the following reasons: (1) Since competition for space be-
tween different tags is not modeled, the computed P-value of the total score
of the 2nd, 3rd, 4th, and 5th tags are slightly conservative; (2) since the
totalScores are discrete variables (but with a very large number of possible
values), the approximation with a continuous uniform distribution introduces
a small error; (3) since the moduleScore is obtained by selecting the best of five
P-values, a multiple hypothesis testing correction should be applied. However,
since we are mostly interested in the ranking of modules, this correction would
make no difference.
8Only a small number of maximal lengths could be tried, as the calculation of the
TotalScore P-values are computationally expensive and depend on that length.
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region of the genome. Given the set of all predicted sites for all
TFs, we first removed from consideration all but one of the hits of
a TF within a given module. Each module thus contains at most
one binding site for a given TF. To perform our permutation test,
we repeatedly randomly chose two sites for two different factors,
and exchanged their labels (but kept the original positions), pro-
vided they both lie in regions of the same GC-content (within 1%
difference, measured over 1 kb). The scrambling procedure was
sufficiently repeated often to reach a random distribution, at
which point the number of sites in each region was counted. The
experiment was repeated 100 times, from which the expectation
and variance of the count of each TF in each region was esti-
mated and the Z-score calculated. Notice that this procedure pre-
serves the varying density of binding sites across the genome
(since only labels, but not positions, are modified), as well as the
local GC-content preferences of each TF. To estimate the signifi-
cance of the long-range spatial correlations observed between
sites of a given TF, a similar permutation test was applied and the
observed number of co-occurrence within a given distance was
compared with those obtained in the permuted data sets, allow-
ing to compute a Z-score for each TF and distance interval.

Correlation between predicted TFBS and tissue-specific gene
expression
For each TF, a set of putative target genes was defined as the genes
with at least one high-scoring predicted site for that TF within a
pCRM and within 10 kb of the TSS. The average expression level
of these genes in each of 79 tissues (GNF Atlas II) was calculated
and its significance was estimated using a permutation test. Tis-
sues showing overexpression or underexpression with Z-score > 5
are reported in Table 2.
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