
Hidden Markov Models

It is natural to combine the i.i.d. model (which has emission probabilities for the various symbols of
the underlying alphabet) with a Markov chain (which has transition probabilities for each edge). A
probabilistic sequence model with both emission and transition probabilities is called a hidden Markov

model (HMM). For example, consider the following probabilistic model for generating a sequence of H’s
(“heads”) and T’s (“tails”). The person generating the sequence has two coins, one fair (where H and
T have equal likelihood) and one loaded (which comes up H 75% of the time). Just after flipping the
fair coin, the person picks the next coin to use, switching to the loaded coin 10% of the time. After a
flip of the loaded coin, she changes back to the fair coin 30% of the time. To complete the model, let’s
assume that the process starts with the fair coin 80% of the time. An observer sees only the sequence
of H and T; the underlying sequences of states (fair or loaded) is hidden. Here is the picture:

fair loaded

start

0.1

0.3

0.8 0.2

0.70.9

H: 0.5

T: 0.5 T: 0.25

H: 0.75

Given the picture it would be straightforward to write a computer program that randomly generates
sequences according to the model. But how can we score a given sequence, i.e., determine the probability
that the sequence would be generated by the model? The sticky point is that we can’t say which sequence
of states was followed to generate the observed sequence of H and T.

Motivation from the gene-prediction problem. We’ll think of a genomic DNA sequence as gen-
erated by a probabilistic sequence model that has states for introns, for exons, for splice signals, for
poly-A signals, etc. Any piece of DNA, such as ACACAC, could be generated by either intron states or
exon states, though not with equal likelihood. Similarly, perfectly good poly-A signals can be generated
in an exon or intron state. That is, given the generated sequence we cannot determine with certainty
the underlying states. But estimating the sequence of states is precisely the gene-prediction problem.
Given a DNA sequence to analyze, a natural goal is to find the most likely state path such that the
model picked the path and generated the observed DNA sequence. For instance, let’s intuitively try to
“decode” the followng sequence, generated by the above head/tail HMM.

TTHTHTTHTHTTHHTHTHHTHHHHHTHHTHHTTHTTHTHTTHTTTHTT

It looks as if the fair coin was used near the ends of the sequence, given the density of T. But near the
middle there is a high density of H, suggesting that the loaded coin was used in that region. One can
imagine assigning to each letter in the sequence the probability that it was generated in the loaded state,
just as GenScan reports a probability that a predicted exon was, indeed, generated from exon states
in its underlying probabilistic sequence model. With the above head/tail sequence, the probability of
being emitted in the loaded state looks highest at the middle H in the run of five consecutive H’s, but
the precise points where coin-shifts were made aren’t clear. In what follows, we’ll see how determine the
most probable state path for a given observed sequence. We’ll also see how to efficiently score a given
sequence, by in effect summing, over all state paths, the probability of picking that path and emitting
the sequence.

1



A toy example. Consider the sequence HHT. It (or any other head/tail sequence of length 3) can
be generated from any sequence of three states (not counting the start state). We’ll use F and L to
denote the fair and loaded states, respectively. The probability that the model picks the path FFF and
generates HHT is (0.8)(0.5)(0.9)(0.5)(0.9)(0.5) = 0.081, while the probability that it picks the path LLL

and generates HHT is (0.2)(0.75)(0.7)(0.75)(0.7)(0.25) = 0.0137· · ·. To get the probability that HHT is
generated by the model, we need to sum, over all 8 paths of length 3, the probability of picking that
path and generating HHT.

Let π denote an arbitrary path of length 3 in the “coin” HMM. Fix S as the observed sequence HHT.
Let P (π, S) denote the joint probability of π and S, i.e., the probability of picking π and generating S.

π P (π, S)

FFF 0.081
FFL 0.0045
FLF 0.0045
FLL 0.00525
LFF 0.010125
LFL 0.000562· · ·
LLF 0.011812· · ·
LLL 0.013781· · ·
total 0.131449· · ·

Thus, the probability of S (given the model) is P (S) = 0.131449 · · ·.

Given that the observed sequence HHT was generated, what is the “posterior” probability, P (π|S),
that a given state-path π was taken? We use the formula

P (π|S) = P (π, S)/P (S)

π P (π, S) P (π|S)

FFF 0.081 0.6158· · ·
FFL 0.0045 0.0342· · ·
FLF 0.0045 0.0342· · ·
FLL 0.00525 0.0399· · ·
LFF 0.010125 0.0769· · ·
LFL 0.000562· · · 0.0427· · ·
LLF 0.011812· · · 0.0898· · ·
LLL 0.013781· · · 0.1047· · ·

Thus the most probable path is FFF .

What is the probability that the second H in HHT was generated in the F state?
0.6158 + 0.0342 + 0.0769 + 0.0427 ≈ 0.77

Fundamental methods for HMMs. In what follows, consider a fixed hidden Markov model, M,
with start state s0 and n other states s1, s2, . . . , sn. Let tj,k denote the transition probability of going
from sj to sk, and let ej(a) be the emission probability of symbol a in state sj . (State s0 doesn’t emit
symbols.) Thus

∑n
k=1 tj,k = 1 for j = 0, 1, . . . , n, while if j > 0, then

∑
a ej(a) = 1, summing over all

possible observed symbols a. Also, fix an observed sequence x = x1x2 . . . xm consisting of m symbols.
Consider a path π from s0 and of length m (the same length as x). That is, π is a connected

chain of m edges in M that starts at s0. Let P (x|π) denote the conditional probability of x given π.
Then P (x|π) is the product of the probabilities of emitting xi at the ith state along π for all i with
1 ≤ i ≤ m. More succinctly, P (x|π) =

∏m
i=1 epi

(xi), where spi
is the ith state on π. Also, let P (x, π)

denote the joint probability of sequence x and path π, i.e., the probability of both picking path π and

2



generating x along that path. The probability of picking π is P (π) =
∏m

i=1 tpi−1,pi
(with pi as above),

and P (x, π) = P (π)P (x|π).
Example. Suppose that a loaded die emits 1 with probability 0.5, and emits 2 through 6 each with

probability 0.1. Suppose that the F-to-L (fair to loaded) transition has probability 0.1 and L-to-F
has probability 0.2. Finally, with probability 0.9 we start with the fair die. Consider the observed
sequence x = 1214641 and the hidden path π = LFFFFFL. Then P (x|π) = (0.5)(1/6)5(0.5), P (π) =
(0.1)(0.2)(0.9)4(0.1), and P (x, π) = P (x|π)P (π). Note that in this model with these probabilities,
P (x, π) > 0 whenever x and π have the same length.

Computing the probability that a given sequence is generated by the model. Let P (x)
denote the probability of generating x from M. Thus P (x) is

∑
π P (x, π), summing over all paths π

from s0. (Only paths with exactly m edges contribute to the sum.) P (x) can be computed by the
so-called Forward algorithm, which is quite similar to the dynamic programming algorithm for aligning
two sequences. For i = 0, 1, . . . , m (denoting a position in x) and j = 0, 1, . . . , n (denoting a state in
M), define fj(i) to be

∑
p P (x1x2 . . . xi, p) over all paths p from s0 to sj . In other words, fj(i) is the

probability of generating x1x2 . . . xi and ending in state sj . You can think of the f -values as forming a
table with m + 1 rows and n + 1 columns. We will fill in the table by rows.

Row 0 consists of values fj(0), corresponding to paths from s0 to sj that “spell out” the first 0
symbols of x. Clearly f0(0) = 1, and if j > 0 then fj(0) = 0. For any later row, say row i, suppose that
the f -values have been determined for row i − 1, and fix sj . Then x1x2 . . . xi is generated by a path
ending at sj if and only if some state sk satisfies (1) x1x2 . . . xi−1 is generated ending in sk (probability
fk(i− 1), (2) the transition from sk to sj is chosen (probability tk,j), and (3) xi is emitted (probability
ej(xi)). Summing over all possible sk, we get the recurrence relation fj(i) = ej(xi)

∑n
k=0 tk,jfk(i − 1).

This gives the following algorithm.

f0(0)← 1; fj(0)← 0 for j = 1, 2, . . . , n
for i = 1 to m do

for j = 1 to n do
fj(i)← ej(xi)

∑n
k=0 tk,jfk(i− 1)

P (x)←
∑n

j=1 fj(m)

The Forward algorithm for HMMs.

Computing the most probable state path generating a given observed sequence. Given
observed sequence x, we want the path π that maximizes P (x, π). (This corresponds to GenScan’s
prediction of the most probably set of genes in a given genomic sequence.) Of course, several paths may
tie for the most probable path, in which case the method will pick one of them. In essence, an optimal
path can be found simply by replacing the sum operation in the Forward algorithm by a maximization.
To see that this is justified, we reason as follows. For i = 0, 1, . . . , m and j = 0, 1, . . . , n, define vj(i)
to be the maximum P (x1x2 . . . xi, p) over all paths p from s0 to sj . If p is restricted so that its last
edge starts at sk, then the best we can do is to optimally spell x1x2 . . . xi−1 with a path ending at
sk (probability vk(i − 1)), add the edge to sj (probability tk,j), and emit xi (probability ej(xi)). This
recurrence relation immediately gives the following algorithm for computing the number maxπ P (x, π).

To explicitly determine an optimizing path π, one can save back-pointers. That is, each time a vj(i)
is computed, one can determine and save backpointerj(i), defined as the k (or one of them, in case of a
tie) such that sk immediately precedes sj on an optimal path spelling x1x2 . . . xi and ending at sj (i.e.,
the k that maximizes the expression used to define vj(i) in the above pseudo-code). These edges can
be used to trace out an optimal path in reverse order.

3



v0(0)← 1; vj(0)← 0 for j = 1, 2, . . . , n
for i = 1 to m do

for j = 1 to n do
vj(i)← ej(xi)maxn

k=0
tk,jvk(i− 1)

maxπ P (x, π) is maxn
j=0 vj(m)

The Viterbi algorithm for HMMs.

Computing the probability that a given observed symbol was generated by a given state.

Fix i where 1 ≤ i ≤ m, which selects element xi of the observed sequence x. For some or all states sj of
M we want to compute the probability that xi is emitted in sj , given that x is emitted by the full path.
This value can be denoted as P (πi = sj |x), using πi to denote the ith state on π. It is analogous to the
probability that a certain genomic segment corresponds to an exon state of GenScan. More precisely,
for fixed j we want to sum P (x, π) over all paths π whose ith state is sj . Dividing this value by P (x)
gives P (πi = sj |x).

Recall that fj(i), as computed by the Forward algorithm, is the probability of emitting x1x2 . . . xi and
ending in state sj (i.e., it equals

∑
P (x1x2 . . . xi, p) over all paths p from s0 to sj). We need to multiply

this by bj(i), defined as the probability of emitting xi+1xi+2 . . . xm, given sj as the starting point (and
not emitting anything until after a state transition). In symbols, bj(i) = P (xi+1xi+2 . . . xm|πi = sj).
The values bj(h) can be computed in backwards order (i.e., decreasing h) beginning with h = m.
The desired recurrence relation follows from the observation that bj(h) is the sum over all sk of the
probability of a transition from sj to sk (namely tj,k) times the probability of emitting xh+1 in state sk

(namely ek(h+1)) times the probability of emitting xh+2xh+3 . . . xm, starting at sk (namely bk(h+1)).

Compute P (x) and values fj(i) for all j using the Forward algorithm.
bj(m)← 1 for j = 1, 2, . . . , n
for h = m− 1 down to i do

for j = 1 to n do
bj(h)←

∑n
k=1 tj,kek(h + 1)bk(h + 1)

for j = 1 to n do
P (πi = sj |x) is fj(i)bj(i)/P (x)

The Forward/Backward algorithm for HMMs.

Hidden semi-Markov models (as in GenScan). Suppose that the probability of picking observed
length ` in state sj is Lj(`) and that the probability of emitting a string y of length ` in state sj is
Ej,`(y). Let vj(i) denote the maximum joint probability of picking a state path π from s0 to sj and
emitting x1x2 . . . xi. If the last edge on π is from sk to sj and if xh+1xh+2 . . . xi is emitted in state
sj , then the relevant value is the probability of emitting x1x2 . . . xh and ending in state sk (namely
vk(h)) time the probability of a transition to sj (namely tk,j) time the probability of picking emitted
sequence length i − h (namely Lj(i − h)) times the probability of emitting xh+1xh+2 . . . xi (namely
Ej,i−h(xh+1xh+2 . . . xi)). This gives following recurrence relation.

vj(i) = max
k

[max
h<i

Ej,i−h(xh+1xh+2 . . . xi)Lj(i− h)tk,jvk(h)]

Reasoning of this sort gives the appropriate variants of the Forward, Viterbi and Forward/Backward
algorithms for hidden semi-Markov models.

4


