
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 11, Number 4, 2004
© Mary Ann Liebert, Inc.
Pp. 581–615

A Bayesian Network Classification Methodology
for Gene Expression Data

PAUL HELMAN,1 ROBERT VEROFF,1 SUSAN R. ATLAS,2 and CHERYL WILLMAN3

ABSTRACT

We present new techniques for the application of a Bayesian network learning framework
to the problem of classifying gene expression data. The focus on classification permits us to
develop techniques that address in several ways the complexities of learning Bayesian nets.
Our classification model reduces the Bayesian network learning problem to the problem of
learning multiple subnetworks, each consisting of a class label node and its set of parent
genes. We argue that this classification model is more appropriate for the gene expression
domain than are other structurally similar Bayesian network classification models, such as
Naive Bayes and Tree Augmented Naive Bayes (TAN), because our model is consistent with
prior domain experience suggesting that a relatively small number of genes, taken in different
combinations, is required to predict most clinical classes of interest. Within this framework,
we consider two different approaches to identifying parent sets which are supported by
the gene expression observations and any other currently available evidence. One approach
employs a simple greedy algorithm to search the universe of all genes; the second approach
develops and applies a gene selection algorithm whose results are incorporated as a prior
to enable an exhaustive search for parent sets over a restricted universe of genes. Two
other significant contributions are the construction of classifiers from multiple, competing
Bayesian network hypotheses and algorithmic methods for normalizing and binning gene
expression data in the absence of prior expert knowledge. Our classifiers are developed
under a cross validation regimen and then validated on corresponding out-of-sample test
sets. The classifiers attain a classification rate in excess of 90% on out-of-sample test sets
for two publicly available datasets. We present an extensive compilation of results reported
in the literature for other classification methods run against these same two datasets. Our
results are comparable to, or better than, any we have found reported for these two sets,
when a train-test protocol as stringent as ours is followed.
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1. INTRODUCTION

The advent of high-density microarray technology for gene expression profiling on the genomic
scale (Schena et al., 1995; Lockhart et al., 1996; DeResi et al., 1997; Brown and Botstein, 1999) has

opened new avenues of research in data analysis and knowledge discovery. With the huge quantities of
data now being generated, the opportunities, as well as the challenges, appear almost limitless.

Recent literature explores several types of analyses of gene expression data:

• gene clustering, in which subsets of genes exhibiting similar expression patterns across cases (e.g., pa-
tients, experimental conditions, points of a time-series) are identified (Eisen et al., 1998; Tavazoie et al.,
1999; Getz et al., 2000; Rigoutsos et al., 2000; Ben-Dor et al., 2001);

• case clustering, in which sets of cases that exhibit similar gene expression patterns are identified
(Alizadeh et al., 2000; Getz et al., 2000; Rigoutsos et al., 2000; Bhattacharjee et al., 2001);

• case classification, in which the value of one or more attributes external to expression data (e.g., disease
subtype, treatment response, prognosis) are predicted from gene expression levels (Alon et al., 1999;
Golub et al., 1999; Ben-Dor et al., 2000, 2001; Khan et al., 2001; Ibrahim et al., 2002; Pomeroy et al.,
2002; van’t Veer et al., 2002); and

• gene network reconstruction, in which models of the gene regulatory system are built (Friedman et al.,
1999; Murphy and Mian, 1999; Tobin et al., 1999; Friedman et al., 2000; D’haeseleer, 2000; Woolf and
Wang, 2000; Pe’er et al., 2001). This objective can be viewed as subsuming the others, provided that
the external classification variables are included as nodes in the network.

Two factors influence a researcher’s focus: the questions of interest in a given setting and the nature of
the datasets available. Each of the goals sketched above is of great import, and, in fact, advances in one
area often contribute to advances in the others. For example, the identification of strong gene clusters, in
addition to indicating potentially significant biological relationships (e.g., coregulation), in some instances
may allow a set of genes to be collapsed into a single abstract unit, thereby reducing problem dimensionality
and allowing other objectives to be more successfully addressed.

The datasets available may or may not include information to support classification. Training data that
is labeled—associating with each training case the class to which it belongs—supports statistical methods
for constructing a classifier. After training on a collection of labeled data, a classifier is constructed which,
when presented with new query cases, predicts a class label from gene expression levels and other possibly
relevant information which may be associated with a case. Without class-labeled data, genes and cases
can be clustered but not classified. Often, however, an effort is made after the fact to construe biological
significance for the clusters formed; the success of such clustering methods depends critically on there
being a relationship between the measure of similarity used to perform clustering and actual biological
similarity. Techniques that attempt to classify after training on labeled data are referred to as supervised,
while those that do not utilize labels in training (e.g., many techniques for gene and case clustering) are
known as unsupervised.

Additionally, various amounts of prior information (e.g., expert knowledge, such as previously known
or suspected functional relationships) can be associated with gene expression data in an attempt to guide
the analysis methods toward better results. Again, the amount of information available—and the degree
of belief in this information—determines what information can be utilized and how it can be utilized.
Little is understood regarding how such information can best be represented and applied within a rigorous
and consistent framework. Such a framework will become of ever increasing importance as our biological
knowledge base grows and as our objectives increase in their scope and complexity.

Our group at the University of New Mexico (UNM) is fortunate to have unusually large microarray
datasets, with a substantial amount of associated clinical information. This clinical information can be
utilized both as additional input and to establish classification criteria. For example, clinical history might
be available that allows us to search for correlations between environmental factors and gene expression
levels and, ultimately, biological manifestation (e.g., disease). In the realm of classification, we expect to
have several interesting class labels to associate with our gene expression data, thus allowing us to explore
a variety of supervised classification problems. Information that will be available to us includes disease
absence or presence, disease type (e.g., leukemia subtypes), response to treatment, relapse/nonrelapse
information, and karyotype.



A BAYESIAN NETWORK CLASSIFICATION METHODOLOGY 583

Consequently, we are motivated to concentrate on the development of methodologies that can exploit
the unusually rich amount of information to be associated with our gene expression data and to develop
techniques particularly well suited to classification in this context. At the same time, we anticipate soon
extending our objectives to include the construction of gene regulatory networks and wish also to be
able to integrate in a rigorous way external information, such as prior identification of key controlling
genes, causal relationships between genes, and known or hypothesized gene clusters. As is argued in
the sections to follow, we believe that the mathematically grounded framework of Bayesian networks
(Bayesian nets)—for example, Pearl (1988) and Heckerman et al. (1995)—is uniquely suited to meet
these objectives. Furthermore, the ability of Bayesian nets to integrate prior knowledge with observational
evidence potentially provides researchers with the ability to build incrementally solutions to problems of
increasing scope and complexity. The primary contribution of the current work is the development of a
Bayesian network classification model that is customized for the characteristics of gene expression data.
In particular, we propose a Bayesian network structure whose relative simplicity allows the computational
effort to be focused on the very high dimensionality inherent in gene expression data. This strategy is
designed specifically to exploit certain domain-specific beliefs regarding gene and class label interactions.
The initial experimental results reported here bear out the validity of this approach. Further, by operating
within the Bayesian framework, the aforementioned capabilities—such as the ability to capture the intergene
relationships of regulatory networks—remain available to the model in the form of future enhancements.

The remainder of this paper is organized as follows. Section 2 briefly reviews some of the most successful
Bayesian network classification methods reported in the literature, details the key elements of our approach,
and offers a motivation for our approach in the context of clinical classification from gene expression data.
Section 3 presents alternative search methodologies which we have utilized in Bayesian net classifier
construction. Section 4 describes our experimental design, and Section 5 presents a suite of results. Since
we began developing and implementing our techniques prior to the production of microarray data at UNM,
the experimental results reported here are against two publicly available Affymetrix datasets:1

• MIT leukemia data (Golub et al., 1999), for samples of two types, ALL and AML, of leukemia. This
dataset is available at www-genome.wi.mit.edu/cgi-bin/cancer/publications/pub_paper.cgi?mode=view&
paper_id=43.

• Princeton colon cancer data (Alon et al., 1999), for normal and tumor tissue samples (available at
www-microarray.princeton.edu/oncology/affydata/index.html).

For purposes of comparison, an appendix presents an extensive compilation of results reported in the
literature for these two datasets, generated using a broad range of classification methodologies.

At the time of this writing, some of the UNM data has begun to become available. As is reported in a
series of papers (Mosquera-Caro et al., 2003; Helman et al., 2004) our classification methodology continues
to perform well on these datasets as compared with other classification methods, such as support vector
machines (Vapnik, 1998) and discriminant analysis (Bishop, 1996; Duda et al., 2000), though we have
discovered that some clinical classification tasks (e.g., prognosis prediction) are inherently more difficult
than are such tasks as classification by disease subtype.

2. BAYESIAN NETS FOR THE CLASSIFICATION OF GENE EXPRESSION DATA

A Bayesian net (Pearl, 1988; Heckerman et al., 1995) is a graph-based model for representing prob-
abilistic relationships between random variables. The random variables, which may, for example, rep-
resent gene expression levels, are modeled as graph nodes; probabilistic relationships are captured by
directed edges between the nodes and conditional probability distributions associated with the nodes. A
Bayesian net asserts that each node is statistically independent of all its nondescendants, once the values

1These sets were produced using the analysis algorithms of the Affymetrix Microarray Suite (MAS) Version 4.0.
Future data sets will be based on the newer statistical algorithms provided by MAS Version 5.0. See http://www.netaffx.
com/index.affx.

http://www.netaffx.com/index.affx
http://www.netaffx.com/index.affx
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of its parents (immediate ancestors) in the graph are known; i.e., a node n’s parents render n and its
nondescendants conditionally independent. It follows from these conditional independence assertions and
the laws of probability that once a conditional distribution is associated with each node, specifying the
probability that the node assumes a given value conditioned on the values assumed by the node’s parents,
a joint distribution for the entire set of random variables is uniquely determined. Algorithms and software
packages (Lauritzen and Spiegelhalter, 1988; Jensen et al., 1990; Shafer and Shenoy, 1990; Dawid, 1992;
Dechter, 1996; Madsen and Jensen, 1999; Cozman, 2001; Jensen, 2001) have been developed to help the
analyst visualize and query Bayesian nets, making this a very convenient representational tool.

While Bayesian nets have found much use as a representational tool for modeling known probabilistic
relationships, from the perspective of the gene expression analysis tasks of current interest, their primary
utility lies in the fact that they also are a powerful learning paradigm. A body of work has evolved—
see, for example, Buntine (1991, 1996), Dawid and Lauritzen (1993), Friedman and Goldszmidt (1996a,
1996b), Heckerman et al. (1995), Lam and Bacchus (1994), Pearl and Verma (1991), and Spiegelhalter
et al. (1993)—in which statistical machine learning techniques utilize a combination of data (observations)
and prior domain knowledge to direct a search for Bayesian nets which best explain the current state
of knowledge embodied by these inputs. This makes Bayesian nets an attractive framework for gene
expression analysis, since they can methodically hypothesize and test gene regulatory models and other
such relationships, using the rigorous methods of classical probability theory and statistics.

Not surprisingly then, others—for example, Friedman et al. (1999, 2000) and Pe’er et al. (2001)—have
successfully applied Bayesian nets to the domain of gene expression analysis. Approaches reported in
those works differ from those reported here both with respect to goals (e.g., the identification of gene
relationships versus our classification objectives) and with respect to the heuristics employed in an attempt
to tame the complexities of the problem. The three cited papers, for example, focus on reconstructing
regulatory networks by identifying network relationships most strongly supported by the data and develop
heuristics for construction of Bayesian nets that reveal such structure.

The construction of regulatory networks is an eventual goal of our work as well. Hence, the natural
applicability of Bayesian networks to regulatory network construction provides one of our motivations for
tackling with Bayesian networks the specific problem of immediate interest, clinical classification from
gene expression data. The literature contains several different Bayesian network classification models.
Friedman et al. (1997) describe an approach, Tree Augmented Naive Bayes (TAN), to using Bayesian nets
in classification as a way of improving upon the classification approach known as Naive Bayes (Duda
and Hart, 1973; Langley et al., 1992). Madden (2002) describes a heuristic for building a Markov blanket
classifier (see, for example, Cheng and Greiner [1999]) that focuses search on only those network nodes
which are relevant to determining the class label’s probability distribution, thus making the search over
the space of full, unconstrained Bayesian net classifiers more computationally effective. Buntine (1992)
develops classification trees in a Bayesian framework. Friedman and Goldszmidt (1996b) and Chickering
et al. (1997) develop extensions to the Bayesian network model in which local structure between variables
can be captured and exploited by importing the structure of decision trees and graphs. To our knowledge,
however, these approaches have not been applied in the context of classification problems of such high
dimensionality as the problem of clinical classification from gene expression data.

The approach we have chosen to take, rather than starting with these most general and potentially
complex Bayesian models that have been developed as general-purpose classification methods, is to attempt
to utilize a modest amount of domain knowledge and develop a model that allows the computational effort
to be focused where that domain knowledge suggests the most benefit will result. Consequently, a primary
contribution of the current work is the development of a Bayesian network classification model that is
customized for the characteristics of gene expression data.

The most significant aspects of the customizations presented here involve approaches to cope with the
very high dimensionality (i.e., large number of genes, each of which assumes a wide range of values)
inherent in gene expression data by exploiting the belief that a relatively small number of genes, taken
in different combinations, is actually required to predict most clinical classes of interest. This prior belief
regarding the nature of these gene expression classification tasks has led us to a rather simple Bayesian
network classification structure that, in its initial tests, has performed quite well in comparison with other
state-of-the-art learning schemes when applied to several gene expression classification tasks. See the
Appendix as well as Helman et al. (2004) and Kang and Atlas (2003) for detailed comparisons.
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In the following, we introduce our method as an alternative to the existing Bayesian net classifier
models, and then briefly contrast the method with the structurally similar methods of Naive Bayes and
TAN. We believe this comparison will motivate our approach as a particularly effective, yet equally
compact, alternative for problem domains of extremely high dimensionality, such as gene expression data.
The experimental results reported in Section 5 bear out the merit of our approach in the gene expression
domain. While it appears that the success of our model structure stems from focusing of the search on
those dimensions of the model space from which the greatest gain often is found, our classification model
is nevertheless amenable to future extensions with techniques that can utilize and/or discover additional
local structure between the genes (Friedman and Goldzmidt, 1996b; Chickering et al., 1997) and to model
averaging techniques (for example, Han and Carlin [2000] and Madigan and York [1995]) for augmenting
the distribution blending methods presented in Section 3.5.

The work presented here provides an alternative formulation and solution to the classification problem,
a formulation which appears to be particularly well suited to classification based on gene expression data.
While the focus of our current research is to extend our methods to other biologically important problems,
such as the construction of regulatory networks, in this article we do not consider problems beyond
classification. In this context, our work is most appropriately compared with other Bayesian network-based
classification schemes, such as Naive Bayes, TAN, and Markov blanket classifiers; with other related
classification methods, such as Bayesian classification trees; and, in general, with other classification
methods, such as support vector machines and boosting.

2.1. A Bayesian net classification model for gene expression data

We view each gene as a random variable, with the class label as an additional random variable. The
genes assume expression levels (which we shall bin into a small number of distinct values), and the label
assumes values such as “cancer” or “no-cancer,” type of cancer, or response to treatment. The symbol
〈e〉 denotes a vector of expression levels assumed by the set genes of all genes in a single case, and
ck denotes a value assumed by the class label. The classification problem can be stated as learning the
posterior conditional distribution of the class label C, conditioned on the gene expression levels, that is,
the collection of conditional probabilities

Pr{C = ck | genes = 〈e〉, current knowledge},
one for each ck and 〈e〉 combination.

The current knowledge appearing in the conditioning event of the above probability generally includes
both a training set of cases and prior distributions over the random variables. These prior distributions may
capture, for example, prior beliefs regarding biological mechanisms. From this perspective, classification
can be solved as a problem of statistical density estimation. After viewing the training set—a sample of
vectors of expression values with an associated class label, drawn from the same distribution as the query
cases we later will be asked to classify—we apply laws of probability to update our priors and “learn”
this common distribution. We then are able to estimate the probability that query q’s class label q[C] is
ck , given that q’s expression vector q[genes] is 〈e〉.

The main difficulty in this learning problem is that the huge dimensionality of 〈e〉 implies that any
realistically sized sample will provide only extremely sparse coverage of the sample space. For exam-
ple, even if continuous expression levels are partitioned into two or three discrete bins, each of the
number_of _binsnumber_of _genes combinations of (binned) expression levels of the several thousand genes
which appear in the training data typically appears only once, and combinations in the query cases typically
have not appeared at all in the training data. Consequently, estimation of the conditional distributions from
simple joint frequencies observed in the sample is impossible.

We consider Bayesian nets in which each gene is a node and the class label is an additional node
having no children. Associated with each node n is a conditional distribution, a set of θn=v,par=〈p〉 ≡
Pr{n = v | Par(n) = 〈p〉}, specifying a conditional probability for each value v of n, conditioned on each
combination of values 〈p〉 of the parents of n. Note that a Bayesian net is a pair (G,�), where G is a
directed acyclic graph (DAG), and � supplies a conditional probability θn=v,par=〈p〉 for every node value,
parent set-combination implied by G. Such a pair (G,�) compactly encodes a unique joint distribution
over the nodes of G; this joint distribution Pr{genes = 〈e〉, C = ck}, and any conditional distribution
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over the random variables represented by the nodes, can be recovered via various known graph traversal
algorithms (Lauritzen and Spiegelhalter, 1988; Jensen et al., 1990; Shafer and Shenoy, 1990; Dawid, 1992;
Dechter, 1996; Madsen and Jensen, 1999; Cozman, 2001; Jensen, 2001).

If we had a fixed Bayesian net that encoded the true distribution from which each case is drawn, we
could extract a classifier, namely the subgraph defined by the class label node C and its parent set Par(C),
along with the associated conditional distributions θC=ck,par=〈p〉 = Pr{C = ck | Par(C) = 〈p〉}. Note that
the conditional independence assertion associated with (leaf) node C implies that the classification of case
q depends only on the expression levels of the genes in Par(C), i.e., the distribution Pr{q[C] | q[genes]}
is identical to the distribution Pr{q[C] | q[Par(C)]}. Note, in particular, that the classification does not
depend on other aspects (other than the parent set of C) of the graph structure of the Bayesian net. Hence,
once given a parent set, density estimation becomes far more tractable. Rather than being concerned with
combinations of all the genes, we are concerned only with combinations of the parent set, and hence a
training sample will generally provide much better coverage of this reduced space.

Given a fixed Bayesian net of the form described, the classification rule it induces is simply a table
associating values 〈p〉 of the parent variables and C = ck of the class label with the network’s induced
conditional probability θC=ck,par=〈p〉. However, we are not given the “true” Bayesian net, but, rather, a
collection of training cases, plus, possibly, some accumulation of prior knowledge, and our task is to build
a classifier to fit these data. How the classifier is constructed to fit the data is what primarily distinguishes
methods, ultimately determining success or failure. Two central aspects of the construction enabled by
operating within the Bayesian framework are the following.

The use of a Bayesian metric in controlling the complexity of the classification rule. While it often is
observed that tables representing complex classification rules (complex conditions over many attributes)
overfit to the training data, our use of the BD metric (Heckerman et al., 1995) as described in Section 3.1
balances in a principled way the gain in adding new conditions with the complexity of the rule. MacKay
(1995) has formalized how a Bayesian metric inherently embodies Occam’s razor, favoring simple rules
unless sufficient gain in information is realized by the addition of conditions. Hence, a stopping condition for
rule refinement is not ad hoc, but part of the Bayesian metric evaluation.2 Further, when prior information
is available, it is incorporated naturally into the evaluation. It also is possible to incorporate into the model
local structure, as described in Friedman and Goldzmidt (1996b) and Chickering et al. (1997). While this
has not been necessary for the classification tasks undertaken to date, future work will explore the utility
of this model extension in the gene expression domain.

The blending of distributions in a principled way. As is detailed in Section 4, we search a space of
networks for a collection of networks that score well under the BD metric. If we chose the single best
scoring network (the maximal posterior method) we would utilize as our posterior the single conditional
distribution this network induces. Our approximation of the posterior is more sophisticated in that it is
capable of blending the distributions of a possibly large number of networks. The blending is based directly
on the mathematics of the Bayesian analysis. In one of our two search methods, the blending is over the
highest posterior probability networks of an exhaustively searched model space. In the second search
method, a larger model space is sampled by means of a greedy search. Future extensions to the sampling
methods utilizing MCMC averaging techniques (Han and Carlin, 2000; Madigan and York, 1995) would
be quite natural.

2.2. Comparison with existing Bayesian net classification models

As was reviewed earlier in this section, several Bayesian network classification models have been pro-
posed. In terms of its simplicity of structure, our model most resembles Naive Bayes and its generalization

2Similarly, Buntine (1992) applies a Bayesian metric in connection with classification tree construction; alternatively,
the MDL evaluation criterion—which includes an explicit penalty term for model complexity—has been used quite
successfully in Bayesian network learning (Friedman et al., 1997). In a separate work (Ding, 2004), we are comparing
the MDL and BD metric in the gene expression domain.
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known as TAN. However, unlike these existing models, our model was conceived specifically to address
key characteristics of the gene expression application domain. In particular, our model is customized to
application domains having very high dimensionality (e.g., many genes), while at the same time exhibiting
a dependency structure which implies that a relatively small number of features, taken in different combina-
tions of several features at a time, is required to predict the class label of interest. These are characteristics
consistent with prior experience with gene expression data and which translate to dependency structures
which Naive Bayes or TAN are incapable of capturing. After contrasting our model with Naive Bayes and
TAN, we briefly consider the potential for extending our model with techniques that have proven successful
in other application domains.

A Naive Bayesian classifier (Duda and Hart, 1973; Langley et al., 1992) assumes independence of the
features (genes), given the value of the class label. Under this assumption, the conditional probability
Pr{q[C] | q[genes]} can be computed from the product

∏
gi∈genes Pr{q[gi] | q[C]} of the marginal con-

ditional probabilities. The Naive Bayesian model is equivalent to a Bayesian net in which no edges exist
between the genes, and in which an edge exists from the class label into each gene. Friedman et al. (1997)
introduces Tree Augmented Naive Bayes (TAN), which relaxes somewhat the independence assumption of
a Naive Bayesian classifier by allowing each gene to have an incoming edge from at most one other gene,
while maintaining an edge from the class label into each gene. This approach yields good improvements
over Naive Bayesian classifiers in the experiments—which are over application domains other than gene
expression data—reported in Friedman et al. (1997).

By contrast, our modeling neither assumes an edge between each gene and the class label, nor concerns
itself with gene interaction. Rather, we are able to ignore the issue of what edges may exist between the
genes and compute Pr{q[C] | q[genes]} as Pr{q[C] | q[Par(C)]}, an equivalence that is valid regardless
of what edges exist between the genes, provided only that Par(C) is a set of genes sufficient to render the
class label conditionally independent of the remaining genes. This modeling is in response to a prior belief
(supported by experimental results reported here and in other gene expression analyses) that for the gene
expression application domain, only a small number of genes, taken in combination, is necessary to render
the class label (practically) conditionally independent of the remaining genes. This both makes learning
parent sets Par(C) tractable and generally allows the quantity Pr{q[C] | q[Par(C)]} to be well estimated
from a training sample.

Each of these two simple models for Bayesian network classifiers—TAN and the model presented here—
has advantages over the other in certain situations. Specifically, because our parent sets, in principle, allow
an arbitrary number of genes to interact in combination, any conditional distribution for the class label
can be modeled exactly. This is in contrast to TAN, where no term of the joint probability distribution
may involve combinations of more than two genes. (Terms of the joint distribution, expanded according
the conditional independence assertions implied by any TAN network, are of one of the following three
forms: P {C}, P {g | C}, or P {g | C, g′}.) Consequently, it is a simple matter to identify families of
underlying distributions over n random variables (for any n ≥ 3) where every TAN network is necessarily
asymptotically incorrect, while instances of our model are asymptotically correct. That is, for these families
of distributions, as the sample grows to reflect the actual distribution, any TAN network misclassifies some
(possibly large) fraction of the query cases, whereas our model approaches optimal classification when all
the relevant variables are included in the parent set. In practice, with gene expression data, it has been our
experience that, typically, combinations of between 2 and 5 binary-binned genes determine the class label—
that is, render the class label conditionally independent of the other genes—while combinations of up to
5–7 binary-valued genes can reasonably be evaluated (for example, by the BD metric) and distributions
can be learned from datasets of the sizes with which we have been working.

TAN’s advantage may be seen when the sample is sparse relative to the number of genes necessary to
render the class label approximately conditionally independent of the other genes. In such a case, if the
true distribution obeys or approximates the conditional independence assertions of TAN, the TAN model
is capable of learning the correct distribution and will converge to this distribution faster as a function
of sample size than will our model. Our network blending (see Section 3.5) can somewhat mitigate the
problem for some distributions, and, further, in some instances, it may be desirable to augment our model
with local structure, allowing our density estimates to converge to the true distribution even for sparse
samples. (Note that the incorporation of local structure would not address the inaccuracies of TAN when
its conditional independence assertions are violated.)
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One can envision a hybrid search, where the BD metric evaluates the fit of networks from both classifi-
cation models, choosing the best fitting model, or possibly even blending their distributions. In the limiting
case, of course, one could consider unconstrained and full Bayesian nets, using the Markov blankets they
define as the classifier (Cheng and Greiner, 1999; Madden, 2002). While this is the most general of the
modeling approaches, it is very much an open question (especially for applications with the characteris-
tics described here) whether or not the gain in modeling generality is actually an advantage, given the
fact that the search over the more constrained network space implied by our model structure (possibly
combined with TAN structures) may focus on that task—construction of good parent sets, expected to be
of small cardinality—most likely to determine classifier quality. Similarly, it is not clear whether, in the
gene expression domain, the diversion of search time to include consideration of local structure would
generally be beneficial or not. As indicated, current gene expression datasets do yield sufficient coverage
of the small number (e.g., often less than five) of binary-binned genes that our experience indicates are
required for the class label’s parent sets, and focusing search on the selection of such subsets of genes
often may be the most fruitful utilization of search time. Future experiments will explore these issues
further.

3. ADDITIONAL MODEL DETAILS

Our approach requires that we address the following issues, which are considered in this and the sections
to follow.

• What does it mean for a Bayesian net to be plausible?
• What do we do with multiple plausible Bayesian nets?
• How do we find (the parent sets Par(C) in) plausible Bayesian nets?
• How do we specify prior distributions?
• How do we bin the continuous gene expression data?
• How do we preprocess (e.g., normalize) the gene expression data?

3.1. Scoring the nets

The derivations in this and the following sections summarize and adapt to our context the work appearing
in Heckerman et. al. (1995), and we implicitly accept the set of assumptions made there.

Bayesian net structures are hypotheses. Each network structure G hypothesizes a collection of con-
ditional independence assertions. Were hypothesis G true with probability 1, the assertions it encodes,
plus the priors and observations D, would induce via the laws of probability a posterior distribution
f (� | G,D,prior) over the space of conditional distributions for G, where each � in the space contains
conditional distributions θn=v,par=〈p〉 for each node n in G. Of particular interest are expectations under
this distribution of the form

E(θn=v,par=〈p〉 | G,D, prior) =
∫

f (� | G,D, prior) × θn=v,par=〈p〉d�,

as this is Pr{n = v | Par(n) = 〈p〉,G,D, prior}. For classification, of course, the desired quantity is

E(θC=ck,par=〈p〉 | G,D, prior)

= Pr{C = ck | Par(C) = 〈p〉,G,D, prior}
= Pr{C = ck | 〈e〉,G,D, prior},

for any full expression vector 〈e〉 whose projection onto the parent set Par(C) is 〈p〉. (Recall that class
label C is constrained to have no children in the network.)

In a learning context, we generally never obtain a single net structure G with certainty, but rather obtain
a collection of plausible Gi . Therefore, it is desirable to employ a probabilistically based scoring function,
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both to guide our exploration of nets and to specify how to blend the distributions they induce. In a
Bayesian framework, one scores how well a hypothesis Gi fits {D, prior} by computing

Pr{D | Gi, prior} =
∫

Pr{D | �} × f (� | Gi, prior)d�.

Then, from priors P(Gi) over network structures, we can obtain Pr{Gi | D, prior}. Such a scoring function
is known as a Bayesian metric.

If we evaluated all possible structures Gi in this manner, the posterior distribution over joint distributions
�j of the nodes in the networks is computed by

f (�J | D, prior) =
∑
Gi

f (�J | Gi,D, prior) × Pr{Gi | D, prior}.

The classification probabilities

Pr{q[C] = ck | q[genes] = 〈e〉,D, prior}
of interest then are the expectations

E(θq[C]=ck,q[genes]=〈e〉 | D, prior) (1)

under this distribution and are obtained as a weighted sum of expectations, namely
∑
Gi

E(θq[C]=ck,par=〈p〉 | Gi,D, prior) × Pr{Gi | D, prior}, (2)

where each parent vector 〈p〉 is the projection of 〈e〉 onto the parent set par of C in each Gi . That is,
the probability each Gi assigns to q[C] given q[genes] is weighted by the posterior Pr{Gi | D, prior}.
In principle, if we could evaluate this sum over all Gi , we would have an exact posterior—and hence
classifier—given the current state of knowledge represented by our priors and the observed cases. The
more peaked is the distribution Pr{q[C] = ck | q[genes] = 〈e〉,D, prior} about its mode class c∗, the
higher is the probability that the classification provided for query q is correct.

3.2. Computational considerations

Our task can be viewed as approximating Equation (2) by finding a set of nets whose respective
contributions dominate (e.g., because they have relatively high posterior weights Pr{Gi | D, prior}) the
evaluation of this sum. Some empirical studies (Cooper and Herskovita, 1992; Heckerman et al., 1995)
indicate that, in a variety of contexts, only a relatively small number of the nets considered (e.g., often one)
have weights large enough to materially influence the evaluation, since the weights drop off quickly as edges
which represent necessary dependencies are omitted or edges which represent unnecessary dependencies are
added. The experimental results reported in Section 5 explore the effect of varying the number of nets used
in this approximation. One important conclusion we draw is that, in the context of high-dimensional gene
expression data, the inclusion of more nets than is typical appears to yield better results. Our experiments
indicate this to be the case both because the “polling” provided by a large number of nets is more accurate
than that provided by a small number and because a large number of nets often provides better coverage of
the expression value combinations observed in the query cases (that is, the inclusion of more nets increases
the chances that query q’s binned expression levels projected onto some included parent sets have been
observed in the training sample).

On the surface, the evaluation of even a single G seems a formidable task; both the expectations (1)
and the Bayesian metric require an integration over potentially arbitrary distributions for �. However,
following the work of Heckerman et al. (1995), we assume that a prior distribution is specified in terms
of a complete net and is Dirichlet. Intuitively, such a prior can be equated with an imaginary sample of
joint observations of the random variables that represents the analyst’s beliefs—both in terms of relative
frequency counts (corresponding to prior probabilities) and absolute size (corresponding to degree of
belief)—prior to observing the sample cases. This prior distribution on the nodes of a complete net induces
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on the nodes of any net a unique prior distribution consistent with a modest set of assumptions. Then, for
any G and this induced prior distribution, plus a set of observed cases, the calculations reduce to a closed
form.

In particular, the closed form for the expectation is

E(θn=v,par=〈p〉 | G,D, prior)

=
∫

f (� | G,D, prior) × θn=v,par=〈p〉d�

= (αpv + Npv)/(αp + Np), (3)

where Np is the number of cases observed in D in which Par(n) = 〈p〉; Npv is the number of cases
observed in D in which Par(n) = 〈p〉 and n = v; and αp and αpv are derived from prior probabilities for
these combinations of values and, under our prior assignments, are extremely small (see Section 3.3 and
Heckerman et al. [1995]).

The closed form for the Bayesian metric is

Pr{D | G, prior}

=
∫

Pr{D | �} × f (� | G, prior)d�

=
∏
n

∏
p

�(αp)

�(αp + Np)

∏
v

�(αpv + Npv)

�(αpv)
,

where � is the Gamma function; n ranges over the nodes in G; p ranges over values 〈p〉 of Par(n) for
the node n fixed by the outermost

∏
; v ranges over the values of the node n fixed by the outermost

∏
;

and αp, αpv,Np,Npv are as defined above, with respect to the node n fixed by the outermost
∏

.
The above expression for Pr{D | G, prior}, which assumes a Dirichlet prior, is known as the BD

(Bayesian-Dirichlet) metric. (Technically, the BD metric is more commonly defined in terms of the joint
posterior probability Pr{D, G | prior}, which is simply the above expression multiplied by the network
prior P(G).)

Further simplifying the computational task is the observation that the scoring function is decomposable;
it can be expressed as the product of scores over the nodes, where a node’s score depends only on its
parent set. In our restricted context of classification, this means we can ignore the score of every node
except the label, effectively using the BD metric as an evaluator of potential parent sets. More precisely,
the BD evaluation of a parent set Par(C) is node C’s contribution to the BD score of any Bayesian net
containing this subgraph. In particular (in contrast to a Naive Bayesian classifier, in which there must be
no edges between genes), the decomposability of the BD score allows the hypothesis represented by parent
set Par(C) to be evaluated in isolation of the question of what other edges may exist in the network.
Similarly, since the expectation of interest depends only on frequencies of node C and of its parent set,
the remainder of the network can be ignored in our context.

3.3. Specification of priors

In each of the experiments reported, we choose an uninformed prior over the distributions that can
be associated with any given network structure. In particular, we employ an extremely small equivalent
sample size (Heckerman et al., 1995) of 0.001 and assign each joint combination of variable values
equal probability. There then is a simple translation of this prior to priors over the possible conditional
distributions in any given network structure, yielding the αpv and αp values appearing in expression (3).
Our choice of prior minimizes its impact on posterior calculations, allowing the data to dominate.

The network structures G are assigned a uniform prior also, but after various prunings (see Section
4) have been imposed. In the context of our minimal-knowledge greedy algorithm, a prior which assigns
equal probability to each DAG in which the class label has M or fewer parents (and zero probability to
all other DAGs) is used, for some specified maximum cardinality choice M. In the context of the external
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gene selection algorithms, a prior which assigns equal probability to each DAG in which the class label
has M or fewer parents, each of which is a member of the selected set of genes (and zero probability to
all other DAGs), is used.

Current research is considering how various types of expert biological information can be incorporated
into priors and utilized by our methods. This is an area we believe to be critically important to future
advances.

3.4. Binning issues

Though Bayesian nets can be utilized to represent continuous distributions, most Bayesian net procedures
assume that the random variables take on only a small number (e.g., two or three) of discrete values. This
requires procedures to discretize (i.e., collapse) typically continuous gene expression values. We describe
in Section 4 the two relatively simple approaches we have used with our current search procedures. The
first method bins expression values into “low,” “medium,” and “high” based on the distance of a particular
expression value from the gene’s mean expression value. The second method is more closely coupled
with our external gene selection method and produces a binary binning based on a maximal “point of
separation” in the training data between the classes.

While these simple methods have produced good classification results, we point out here that there are
many interesting avenues of research in which the binning procedure is more integrated with the search
for good Bayesian nets, and candidate binnings are evaluated in the same framework as are other aspects
of the nets (see, for example, Fayyad (1993) and Friedman and Goldszmidt (1996a)). We consider this to
be an important avenue for future research.

3.5. A multi-parent-set classifier

We have indicated how a parent set of the class label corresponds to the relevant (for classification)
subgraph of a Bayesian net and, with Equation (2), how the class distributions associated with each parent
set in a collection of parent sets are combined by means of the BD scoring metric. Our method then is to
build a classifier from some number PS of parent sets that score high under the BD metric. That is, we
perform some form of search (see the next section), selecting the PS top-scoring parent sets, and these are
the sets whose distributions contribute the terms for our approximation of the Equation (2). We see from
Equation (3) that the individual probabilities contributed are simply of the form (αpv +Npv)/(αp +Np).

An important phenomenon results from the sparseness of the data, especially in the high dimensional
space of microarray data. It is possible that the combinations of values appearing in q[pari] for some of
the parent sets pari are not seen in training or seen only minimally (for example, one or two occurrences).
The distributions yielded by such nets will then reflect only the prior, which (as we shall generally
assume) is uninformed, yielding equal class probabilities, or will be determined by the handful of training
cases with this pari combination. It is important to note that this is the correct posterior distribution
under the hypothesis of this parent set and given current knowledge and should not be interpreted as a
“weak” or “missing” distribution simply because it is based on a small or empty sample. The strength
of this distribution as it contributes to (2) is determined solely by the BD fit. A dispersed distribution
(e.g., uniform) learned from a small sample and a peaked distribution learned from a large sample contribute
their expectation in the same way, their relative contributions to the posterior affected only by their BD fit.3

Is it appropriate to treat the sparse-sample-based distributions on equal footing with large-sample-based
distributions? We consider the variance of the distribution. Variance reflects, among other characteristics,
how much the distribution may be expected to change if more data is observed. In the case of high variance,
it is not unlikely that new data will shift the distribution dramatically.

The variance of the posterior Pr{C = ck|Par(C) = 〈p〉,G,D, prior} of a binary-valued class label,
being a Dirichlet distribution, is

(Pr{C = ck|Par(C) = 〈p〉} × (1 − Pr{C = ck|Par(C) = 〈p〉}))/(αp + Np + 1).

3Though peaked distributions which fit a large sample well tend to have better scores than dispersed distributions
that fit small samples well.
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So, an interpretation is that, when the “sample size” Np is small or when the probability is spread evenly
across the classes, variance is relatively high and the distribution is possibly “unstable” in the presence of
additional observations. While the posterior distribution it yields is undeniable given the current state of
knowledge, it is not unlikely to change dramatically given new data. In this sense, it is less “reliable.”

We have experimented with two heuristics for adjusting a parent set’s contribution to the evaluation of
a query case in order to address the issue of the variance of the distribution. Note that unlike a set’s BD
score, which is used in parent set selection as well as for a weight in the posterior computation (2), this
adjustment is query specific, reflecting the amount of variance var(q) in the distribution of a particular
query q’s (unknown) label. The two adjustments considered are the following.

• When evaluating a query q, set to zero the weight in (2) of any parent set pari such that q[pari] has
no occurrences in the training sample. Then renormalize the remaining BD weights to sum to 1.

• Generalize the above so that 1/var(q) is the adjustment factor of each set pari and then renormalize
BD/var(q).

A variant of the second adjustment strategy, in which an adjustment factor of zero is used when Np is
zero, improved performance in cross validation experiments on the gene data training sets by preventing a
large number of parent sets, each yielding few observations on a query case, from unduly influencing the
classification. This method is what is used in the experiments reported in this paper. More sophisticated
adjustments tied to Bayes risk are the subject of current research.

4. SEARCH

The research presented in the following sections explores two alternative methods of building the type
of Bayesian classifier described in the previous sections.

The first method utilizes minimal prior knowledge regarding good parent sets for the class label and,
within the Bayesian net framework, performs a simple greedy search over the entire set of genes to construct
PS good parent sets. The second method utilizes gene selection external to the Bayesian net framework
to produce a small set S of “good genes” (like the informative genes of Ben-Dor et al. [2000, 2001]), and
then, within the Bayesian net framework, performs an exhaustive search of this set to find the best PS
subsets of S (each subset up to a specified maximum cardinality M).

4.1. Minimal-knowledge greedy building methods

This family of methods ignores essentially all prior knowledge, including, in the experiments reported
here, prior knowledge of which genes are “control” or “housekeeping” genes, which expression values are
deemed reliable (in particular, as indicated by the P , M , and A values in Affymetrix data), and biologically
known relationships between genes. We do utilize a biological “prior” that deems it likely that only a small
number of genes is necessary to classify the cases, that is, that only a small number of genes is required to
render the class label conditionally independent of the remaining genes. This biological prior is necessary
for any frequency-based classification method to go forward, due to sample size issues, and makes both the
greedy and exhaustive searches computationally feasible. This prior is, in fact, supported by experiments
with the current datasets in which performance—both BD and our actual classification rates—begins to
diminish after a cardinality of roughly > 6. This is not quite conclusive proof, as improvement might
follow disimprovement (e.g., as is exploited by simulated annealing), but this seems unlikely, especially
in light of sample size issues (e.g., statistically meaningful numbers of observations of any combination
of more than six gene’s expression levels is unlikely).

The version of greedy employed here proceeds in the following manner. On a designated training set
(see details of the methodology in Section 5.1):

1. Use some algorithm to bin the gene expression data.
2. Determine a number K of seeds, a number PS of parent sets, and a maximum cardinality M for the

parent sets.
3. Select K seed genes, based on some “goodness” criterion.
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4. For each seed gene gseed ,
a. Initialize the parent set to the singleton set {gseed}. Consider the parent set {gseed} for inclusion in

the list of the best PS parent sets evaluated so far.
b. Iteratively build the set to cardinality M by adding one gene g at a time, chosen from the universe

of all genes to maximize the BD score of {current set} ∪ {g}. Consider each such parent set {current
set} ∪ {g} for inclusion in the list of the best PS parent sets evaluated so far, resulting in the inclusion
of zero or more of these parent sets {current set} ∪ {g}. The single best of these extensions to the
previous {current set} then becomes the new current parent set and is similarly extended at the next
iteration. Continue iterating until parent sets of cardinality M genes are evaluated and considered
for inclusion in the list of the best PS parent sets evaluated so far.

5. Construct a PS-parent-set Bayesian net classifier from the list of selected parent sets (each of cardinality
between 1 and M) as described in Section 3.5.

In Section 5.1, we specify the binning and seed selection methods used in the experiments reported in this
paper.

Note that every set the greedy method evaluates, starting from each of its seeds, is a candidate for
ultimate selection as one of the PS parent sets—even those sets of smaller than the maximum cardinality
M. In particular, at every iteration, in going from cardinality c to c+ 1, every extension of the best parent
set of cardinality c gets a chance to be on the list of top parent sets. Consequently, some seeds may
contribute more than one parent set; others may not contribute any parent sets at all.

This simple greedy method was implemented initially as a proof of concept; we suspected it would
have many flaws and that we would soon replace it with more sophisticated search methods. However, it
performed surprisingly well, as is attested to by both the BD scores of the best sets it finds and by the
performance on our cross validation tests of the classifiers it produced (see the results in Section 5). This
is not to say that avenues of potential improvements are not apparent. For example, there often is a great
deal of overlap in the membership of the parent sets produced. Two or three genes tend to be present in a
large fraction of the PS parent sets selected. This is not necessarily a problem, but it might indicate that
a nonrepresentative subspace of the set of all possible parent sets is being searched. As is discussed in
Sections 5.2 and 5.4, this effect could explain why a relatively small number of high quality parent sets
are found by the algorithm.

An alternative heuristic search would mimic classical integral approximation techniques (Gander and
Gautschi, 2000). In a similar learning context (Helman and Bhangoo, 1997; Helman and Gore, 1998), we
employ with some success a Monte Carlo sampling method to approximate an integral representing Bayes
risk. Such methods are designed to approximate an integral by sampling from regions in proportion to the
amount of density contained in the region and may be adaptable to the current approximation problem.
Additionally, we will consider utilizing the more sophisticated MCMC averaging techniques (Han and
Carlin, 2000; Madigan and York, 1995) in this context.

4.2. External gene selection methods

A second family of methods utilizes gene selection algorithms that have been developed in other contexts.
This is both a promising approach to the classification problem and indicative of how the Bayesian
framework can be used to incorporate expert prior knowledge of a variety of types. As is the case with the
minimal-knowledge greedy methods, we currently do not utilize prior domain knowledge about the genes;
such information may, however, be discovered by our external gene selection and normalization methods
and then incorporated into the framework in the form of gene selections, normalization, and binning.

The objective of external gene selection is to identify a small set of genes from which good parent sets
can be constructed within a Bayesian net search procedure. By severely limiting a priori the size of the
universe of genes to be searched for good parent sets and the maximum cardinality of the resulting parent
sets, an exhaustive search for the PS best parent sets (under the BD metric) can feasibly be performed.
Thus, whereas the greedy method described in the previous section heuristically builds PS good subsets
of the universe of all genes, the external method finds the PS best subsets of an intelligently restricted
universe of genes.

We are studying a number of different methods for selecting genes whose expression values are strong
indicators of a case’s classification. The results reported in this paper are based on a strategy that computes
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a separation quality value for each gene and orders the genes accordingly. We then, for example, can select
the genes that are the best separators.

Our separation measure is similar to Ben-Dor’s TNoM score, described in Ben-Dor et al. (2000, 2001).
Both methods consider partitionings of the cases into two sets; the difference between the two methods is
in how the partitions are evaluated. Where TNoM compares the number of cases from each class in each
of the two partitions, we account for the sizes of the two classes by comparing the fraction of cases from
each class. The two methods can result in different gene selections, and we claim that the relative score is
well justified when, for example, the underlying classes differ significantly in size. We have experimented
with both measures and don’t find either to be uniformly better than the other. Consequently, for a given
application, we currently allow experimental cross validation results against a training set to guide our
choice of measure.

Let E1, E2, . . . , En be the expression values for a given gene across the n cases of a training set,
and let L1, L2, . . . , Ln be the corresponding class labels. Without loss of generality, we assume that the
expression values are ordered E1 ≤ E2 ≤ · · · ≤ En so that Li is the class label of the ith smallest
expression value. The separation quality value of a gene is intended to indicate to what extent identical
class labels are grouped together in L1, L2, . . . , Ln as a consequence of the ordering of the Ei values.
Separation is considered to be perfect, for example, if the Li labels are completely “sorted.”

Under the assumption that there are exactly two class labels, A and B, we compute separation quality
as follows. Let Acount(i) be the number of A labels in L1, L2, . . . , Li , and let Bcount(i) be the number
of B labels in L1, L2, . . . , Li . For each position 0 ≤ i ≤ n, we can quantify the relative separation of the
class labels if we were to split into the two sets L1, L2, . . . , Li and Li+1, Li+2, . . . , Ln:

Separation(i) =
∣∣∣∣ Acount(i)

Acount(n)
− Bcount(i)

Bcount(n)

∣∣∣∣ .

We then define separation quality to be the best of these values:

SeparationQuality = max
1≤i≤n

Separation(i).

Genes can be ordered by their SeparationQuality values, so we can talk about the k best or the k worst
separators.

The computed values have the following properties.

• Acount(0) = Bcount(0) = 0
• Bcount(i) = i − Acount(i), for 0 ≤ i ≤ n
• Separation(0) = Separation(n) = 0
• SeparationQuality = 1 indicates perfect separation.
• SeparationQuality necessarily is > 0, since Separation(1) is 1/Acount(n) or 1/Bcount(n), depending

on whether L1 is A or B, and we take the maximum of the Separation values.
• We get the same SeparationQuality value if we define Acount and Bcount in terms of Li+1, Li+2, . . . , Ln

instead of L1, L2, . . . , Li .

We note that if the gene expression values are not distinct, then the ordering of Ei values is not
unique, and the computed separation quality value will depend on the procedure used to break ties. We
are considering a number of ways to pin down the ordering in the case of ties—specifically, to determine
an appropriate separation quality value. We currently break these ties arbitrarily.

In addition to computing a separation quality value, we can use the same computation to propose a bin-
ning of each gene’s expression values into two bins. Let max be the i value that maximizes Separation(i),
and compute

BinValue = Emax + Emax+1

2
,

which is a gene expression value that lies between the separated Ei values in the best separation. The
computed BinValue can be used as a boundary between bins.
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We note that the maximizing i value is not necessarily unique, even if the Ei values are distinct; we
currently break these ties arbitrarily. We also note that Lmax and Lmax+1 necessarily are different labels;
otherwise, SeparationQuality could be increased by increasing or decreasing max by 1.

This binning strategy is motivated by a prior belief, shared by many domain experts, that a gene is
well-modeled as a binary switch. This belief appears to be supported by preliminary analyses against the
datasets considered here, as well as against additional datasets (Mosquera-Caro et al., 2003; Helman et al.,
2004) reported elsewhere. The method whose analyses are for setting bin boundaries described above is
quite natural, as it selects a point yielding bins that maximally distinguish the classes (with respect to
SeparationQuality), and thus is highly analogous to the boundaries suggested by Ben-Dor’s TNOM-based
method. The binning procedure also is similar to the initial binning policy of the procedures described by
Fayyad (1993) and Friedman and Goldszmidt (1996a)—though they consider a variety of policy evaluation
metrics—in which an initial binary binning is heuristically refined into a finer-grained discretization. We
have conducted extensive experiments (Ding, 2004) using each of the MDL and BD evaluation criteria to
determine stopping conditions for refinement, and, for a large fraction of genes (i.e., > 90% of the genes on
the Princeton dataset), refinement of the initial binary binning is not supported by these measures. Section
5.1 describes an alternative tertiary binning strategy we considered in the context of the uninformed greedy
method.

4.3. Preprocessing the data (normalization)

One of the advantages of the Bayesian approach is that it provides a natural mechanism to account for
special domain knowledge in the construction of a classifier. Nevertheless, in our first round of experiments,
we are focusing on the gene expression data, making use of minimal prior knowledge. One of the issues we
are addressing in this simplified context is the preprocessing (normalization) of gene expression data before
the application of our classification procedures. Because of variabilities in gene expression measurements
and uncertainties about the processing done by the tools used to generate the data,4 we decided to include
the effect of normalization as part of our studies. Specifically, for each dataset we study, we attempt to
learn via cross validation the most effective of a family of normalization parameters.

Our approach to normalization is to consider, for each case, the average expression value over some
designated set of genes, and to scale each case so that this average value is the same for all cases.
This approach allows our analysis to concentrate on relative gene expression values within a case by
standardizing a reference point between cases. For example, if the expression value within a case of
certain genes gi relative to the expression value of some reference point gene g is an effective class
discriminator, then it suffices simply to consider these gi values, provided cases have first been normalized
to a common g value. The key difference between the normalization strategies we considered is the choice
of the reference point gene g, or, more generally, the choice of a set R of reference point genes. While
selecting an appropriate set R could provide a good opportunity to take advantage of special knowledge
of the underlying domain, consistent with our desire to focus first on raw data in the absence of prior
knowledge, we use here a simple selection method based on the SeparationQuality value already discussed.
In particular, we set R to be the k worst separators—that is, genes with the lowest SeparationQuality
values—for some number k. The motivation for this choice of R is that, as our experiments indicate, a
suitable reference point can be found as the average of the expression values of genes that are independent
of the class label for which we are trying to develop a classifier. Further, normalizing with respect to such
genes will not discard information that might be valuable in class discrimination. Choosing the k worst
separators for normalization is a heuristic for identifying genes likely to be independent of the class label.
While many factors (e.g., noise) could mislead this measure into selecting inappropriate reference point
genes, it seems reasonable that, in the absence of additional information, genes that appear in the data to
be bad separators are good candidates to serve as reference point genes. Indeed, our experimental results
support this as a reasonable normalization strategy.

In summary, the normalization algorithm we used is as follows.

1. Let R consist of the k worst separator genes, as described above.

4Affymetrix Microarray Suite (MAS) Version 4.0.
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2. Let A represent the target average value for the genes in R; A may be chosen arbitrarily, since its value
does not affect any aspects of the computation.

3. For each case C,
a. compute the average value, AveR,C , of the expression values in case C for the genes in R, and
b. multiply every expression value of case C by the scaling factor A/AveR,C .

We took k to be a parameter to be learned in the course of training and experimented with several different
values accordingly. The results of these experiments against training data are reported in Section 5.3;
Section 5.4 reports how well a choice of k made against training data generalizes to an out-of-sample
test set.

5. RESULTS

The MIT leukemia data (Golub et al., 1999) and the Princeton colon cancer data (Alon et al., 1999)
are considered. The MIT data consists of 7,129 gene expression values per case. The Princeton data is
provided in a heavily pruned form, consisting of only 2,000 genes per case.

5.1. Experimental methodology

In order to avoid any possibility of overfitting our results to specific datasets, we set aside from each
dataset a fraction of cases, forming a test set. For the MIT dataset, a partition into 38 training cases and
34 test cases (our set aside, out-of-sample cases) is provided on the MIT website. The Princeton website
provides a single dataset of 62 cases. We randomly partitioned this dataset into 38 training cases and
24 set-aside test cases. The test sets were not examined at all in the course of algorithm development,
nor to establish parameter settings, and were considered only after our best methods, along with their
parameter settings, were identified through a cross validation methodology (detailed below) on the training
sets. Results of our best method—as identified against the training sets only—run against the set-aside test
sets are reported in Section 5.4.

We now describe the cross validation methodology that was applied to the 38-case training sets in order
to develop our methods and to indicate which techniques would be the most promising to pursue. In
particular, our initial evaluation of a classifier building method under development employed “leave-one-
out” (LOO) cross validation. On each experiment, a method would train on 37 cases, building a classifier
to be used to classify the single left-out query case; the build/evaluate cycle is repeated 38 times, once for
each “fold” created by leaving out of the training a different query case.

Care must be taken during development that the methods used in the classifier construction process not
exploit any knowledge of the left-out query case it is to be evaluated on. That is, any method applied to
build the classifier must be applicable when we turn attention to the set-aside test set (or to an actual set
of query cases for which a classification is desired), at which time knowledge of the query’s class label,
of course, is unavailable.

This requirement implies, for example, the following.

• Gene selection by external means must be repeated on each of the 38 folds, without being exposed to
the left-out case to be used as a query in the evaluation.

• Similarly, if normalization or binning is to use label knowledge, it must not be exposed to the left-out
case and hence must be repeated for each fold. If, however, a binning algorithm does not use knowledge
of labels (as is the case of the algorithm used in connection with the greedy construction), it may inspect
the entire training set, since in an actual classification application, the binning algorithm could inspect
the nonlabel fields (genes) of the cases to be classified at the time these cases are presented for analysis.

Greedy parent set construction. The LOO cross validation setup for the greedy method takes the
following form:

1. Let T represent the full training set (e.g., of 38 cases).
2. Bin T , without using label knowledge.
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3. For each qi ∈ T , define fold Fi = (T − {qi}).
a. Select K seeds against Fi .
b. Use the greedy method to construct PS good sets (under BD) up to cardinality M against Fi ,

starting from each seed.
c. Compute the variance in each set’s induced distribution of qi’s unknown label and adjust the BD

score of each set to form a PS-set classifier.
d. Classify qi[C] as the most likely value, given qi[genes] under the classifier’s distribution.
e. Compute the error and uncertainty in the classification for fold Fi .

4. Report the average error and uncertainty rates across the folds.

The information reported in Step 4 is derived from the constructed classifiers’ induced distributions. In
particular, the classifier constructed for each fold Fi specifies a conditional posterior distribution Pr{q[C] =
ck | q[genes] = 〈e〉} for a query case’s class label. In the current experiments, the class label is binary, and
q is classified as belonging to the class with higher posterior; if value = 0.5, no classification is possible.
An error occurs if q[C] is the lower probability class. The TER (total error rate) values (which will later
be reported in Tables 3–6) are based on the combined number of misclassifications and no classifications.

Uncertainty is a measure of the strength of a classification. If Pr{q[C] = ck | q[genes] = 〈e〉} is near 1.0,
the classification is strong, whereas if it is near 0.5, it is weak. On each fold, we compute the “probability of
error” as well as the 0/1 misclassification indicator. In particular, probability of error is given by (1.0 minus
the probability the classifier assigns to the true class q[C]). The APE (average probability of error) values
(also to be reported below in Tables 3–6) are averages over this quantity.

For the experiments reported in Section 5.2 and 5.4, we utilized the following relatively simple binning
(Step 2) and seed selection (Step 3.a) techniques.

Binning. As is indicated in Section 3.1, practical Bayesian net methods require a discretization of the
expression values. Following many gene expression researchers, we partition values into three ranges:
“under-,” “average-,” and “over-” expressed. Our partitioning method for greedy creates a tertiary binning
for each gene g as

(−∞, (mean(g) − nlow × σ(g)),

[mean(g) − nlow × σ(g),mean(g) + nhigh × σ(g)],
(mean(g) + nhigh × σ(g),∞),

where the mean mean(g) and standard deviation σ(g) of each gene’s g expression values are computed
over all cases. The choices of nlow and nhigh are made through experimentation on the training data. Once
selected, these are fixed and used without modification on the set-aside test data; otherwise, we would run
the risk of overfitting to the data. For the MIT data, setting nlow = nhigh = 1.0 worked well, and there
was little sensitivity in the cross validation results. In the Princeton data, there was far more sensitivity in
the cross validation, and a limited search arrived at the settings nlow = 1.25 and nhigh = 0.4. Subsequent
analysis indicates that a more extensive search for these parameter settings often results in overfitting to
the data. In fact, it appears that the tertiary binning considered here is generally inferior to the binary
binning described in Section 4.2 in conjunction with the external gene selection methods.

Seed selection. Singleton parent sets {g} are formed for each gene g and the BD score obtained. The
genes corresponding to the K highest scoring parent sets are used as seeds.

External gene selection plus exhaustive parent set construction. The LOO cross validation setup for
external gene selection takes the following form.

1. Let T represent the full training set (e.g., of 38 cases).
2. For each fold defined by Fi = (T − {qi}),

a. use an external method against Fi to normalize expression values and select a set S of N genes,
b. Bin Fi , possibly using information returned by gene selection,
c. exhaustively search the set S for the best PS subsets (of cardinality up to M) under the BD scoring

metric,
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d. compute the variance in each set’s induced distribution of qi’s unknown label, and adjust the BD
score of each set to form a PS-set classifier,

e. Classify qi[C] as the most likely value, given qi[genes] under the classifier’s distribution, and
f. compute the error and uncertainty in the classification for fold Fi .

3. Report the average error and uncertainty rates across the folds.

In our experiments, we employed the external gene selection, normalization, and binning methods
described in Section 4.2. In particular, the external gene selection algorithm is invoked on each fold with
the following effect.

• The algorithm normalizes the cases in Fi using the k genes with the lowest SeparationQuality as controls.
• The algorithm returns the N genes with the highest SeparationQuality.
• The algorithm returns a binary bin boundary for each selected gene, corresponding to where the maximum

separation value is obtained.

Once results of the external gene selection algorithm are returned for a fold, an exhaustive search is
performed (on a normalized and binned Fi) for the best PS parent sets, from which the Bayesian net
classifier is formed.

Note that the instantiation of the steps of either methodology with specific algorithms defines a classifier
building method. When run on a specific training set (or fold of a training set), it yields a PS-set classifier,
which in turn yields a posterior class distribution. This distribution can then be used to classify query cases
with unknown labels, assuming that the query cases are drawn from the same distribution which underlies
the training set. We emphasize that it is the building method, not the particular classifiers built on a run
against a training set (or fold of a training set), that is being assessed.

5.2. Cross validation results with greedy

In tests of the greedy method, we studied the effects of varying the number PS of sets used in the
classifier. We held fixed at M = 5 the maximum cardinality and, due to computational considerations, the
number of seeds at K = 60.

The following two tables summarize, respectively, results with the Princeton and MIT training sets. Each
row of the tables summarizes, for a fixed PS, the LOO cross validation test results for the 38 cases of the
respective training set. The table entries MIS, ERR, and TER tally the number of misclassifications and
nonclassifications as described in the legand below. APE–average probability of error per fold—captures
the uncertainty in the classifications. Since the classification is based on the posterior probability of a
class, a posterior near 1.0 or 0.0 is a confident prediction (which may be either correct or incorrect),
while a posterior near 0.5 is a prediction with low confidence (when the posterior is approximately 0.5,
no classification is made). The error in a prediction is 1.0 minus the posterior probability assigned by the
classifier to the true class, and APE is the average over these errors. The qMax result appearing at the end
of each table is discussed below.

The tables indicate an initial increase in quality as PS increases, and then a leveling off and ultimate
decrease in quality. The most interesting result is the significant increase in quality over just a single set
(PS = 1, the maximum a posteriori solution), which is a prevalent Bayesian net methodology for learning
distributions. As predicted from the discussion in Section 3.3, a single parent set does not provide adequate
coverage of gene expression combinations in the query case, leading to a large number of nonclassifications.

To establish that the polling effect noted in Section 3.3 is real and significant, we also conducted
experiments labeled “qMax.” Here, 500 sets are built as with PS = 500, but for each query case q, the
single parent set with the highest variance adjusted score is used to classify q. Note that this query-specific
set selection from the 500 always selects (if available, which is the case in all our cross validation runs) a set
in which q’s combination of expression values appears in the training set, eliminating the no-classification
errors. That this method underperforms the best PS > 1 methods indicates that the blending of distributions
contributes to the quality of the classification. Examination of the details of the computations performed by
the classifier also indicates that, in many cases, the distributions induced by the parent sets exert competing
effects on the classification and that the weighting resolution generally leads to a correct classification.
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Table 1. Princeton Training Data (nlow = 1.25, nhigh = 0.4)a

PS APE MIS ERR TER

1 0.184212 4 10 0.263158
5 0.169929 7 7 0.184211

10 0.259123 12 12 0.315789
20 0.312331 14 14 0.368421
60 0.329858 13 13 0.342105

300 0.340612 13 13 0.342105
500 0.346113 14 14 0.368421

qMax 0.289474 11 11 0.289474

aPS: number of parent sets used, APE: average probability error per fold,
MIS: number of misclassifications, ERR: total error count (misclassifications +
nonclassifications), TER: total error rate (including both misclassifications and
nonclassifications).

Table 2. MIT Training Data (nlow = 1.0, nhigh = 1.0)a

PS APE MIS ERR TER

1 0.315791 0 24 0.631579
5 0.193975 1 14 0.368421

10 0.140994 1 9 0.236842
20 0.067464 2 3 0.078947
60 0.070245 3 3 0.078947

300 0.089030 3 3 0.078947
500 0.118584 5 5 0.131579

qMax 0.157897 6 6 0.157897

See footnote for Table 1.

We speculate that the degradation in classification quality for PS above a threshold is caused by the
potentially unrepresentative search performed by our simple greedy algorithm, as alluded to in Section
4.1—greedy, being unable to construct enough high-scoring sets, must “fill” the classifier with many low-
scoring (and, hence, worse fitting to the observational data) sets which contribute inaccurate distributions.
This explanation is supported by the near monotonic increase in quality reported in Section 5.3 for the
exhaustive search following external gene selection. This suggests that refinements to greedy as proposed
in Section 4.1 could well obtain overall improvements, especially as is noted in Section 5.4 when we
discuss the results of the greedy-built classifiers against the out-of-sample test set.

5.3. Cross validation results with external gene selection

In tests of the external gene selection methods, we studied the effects of varying both PS and the fraction
W of genes used as controls in normalization. As with greedy, we held fixed the maximum cardinality M
at 5. For computational reasons, the number of genes selected was fixed at 30.

The following two tables summarize, respectively, results with the Princeton and MIT training sets. Each
row of the tables summarizes, for a fixed W and PS, the LOO cross validation test results for the 38
cases of the respective training set. As is the case for Tables 1 and 2, the qMax result at the end of each
of Tables 3 and 4 is for 500 available parent sets and with W set at a value which produced generally
good results across the PS values for the multi-set classifiers.

Unlike the case for greedy selection, the results of Tables 3 and 4 demonstrate that there is a steady
improvement for the Princeton data as PS increases and near flat behavior for the MIT data for PS ≥ 60.
Again, the qMax experiments (for the Princeton data) and inspection of the detailed results provide further
evidence that the blending provided by a large number of parent sets has a positive impact on classifier
quality.
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Table 3. Princeton Training Dataa

PS W APE MIS ERR TER

1 0.000000 0.394735 15 15 0.394737
1 0.100000 0.480700 17 20 0.526316
1 0.250000 0.328950 8 17 0.447368
1 0.400000 0.302636 8 15 0.394737
1 0.550000 0.328950 7 18 0.473684
1 0.700000 0.263162 7 13 0.342105
1 0.850000 0.499997 18 20 0.526316
1 1.000000 0.499994 16 22 0.578947
5 0.000000 0.393831 14 14 0.368421
5 0.100000 0.376276 14 14 0.368421
5 0.250000 0.287669 9 11 0.289474
5 0.400000 0.267520 9 11 0.289474
5 0.550000 0.241729 9 10 0.263158
5 0.700000 0.261501 9 10 0.263158
5 0.850000 0.455024 17 17 0.447368
5 1.000000 0.333537 10 13 0.342105

10 0.000000 0.377660 15 15 0.394737
10 0.100000 0.398858 15 15 0.394737
10 0.250000 0.334334 12 12 0.315789
10 0.400000 0.261875 9 11 0.289474
10 0.550000 0.221307 8 9 0.236842
10 0.700000 0.270484 9 9 0.236842
10 0.850000 0.410469 14 14 0.368421
10 1.000000 0.303383 10 11 0.289474
20 0.000000 0.377660 15 15 0.394737
20 0.100000 0.402184 16 16 0.421053
20 0.250000 0.302113 11 11 0.289474
20 0.400000 0.251675 9 9 0.236842
20 0.550000 0.215504 7 8 0.210526
20 0.700000 0.265321 9 9 0.236842
20 0.850000 0.361076 12 12 0.315789
20 1.000000 0.325153 11 12 0.315789
60 0.000000 0.350131 12 12 0.315789
60 0.100000 0.375262 14 14 0.368421
60 0.250000 0.290695 10 10 0.263158
60 0.400000 0.233612 9 9 0.236842
60 0.550000 0.204675 7 7 0.184211
60 0.700000 0.249359 8 8 0.210526
60 0.850000 0.358279 12 12 0.315789
60 1.000000 0.286617 10 11 0.289474

300 0.000000 0.344514 13 13 0.342105
300 0.100000 0.358541 14 14 0.368421
300 0.250000 0.297478 11 11 0.289474
300 0.400000 0.223621 7 7 0.184211
300 0.550000 0.204802 7 7 0.184211
300 0.700000 0.237995 8 8 0.210526
300 0.850000 0.317356 12 12 0.315789
300 1.000000 0.249347 9 9 0.236842
500 0.000000 0.341484 13 13 0.342105
500 0.100000 0.351571 14 14 0.368421
500 0.250000 0.293802 12 12 0.315789
500 0.400000 0.218802 7 7 0.184211
500 0.550000 0.206535 6 6 0.157895
500 0.700000 0.231278 8 8 0.210526
500 0.850000 0.301052 11 11 0.289474
500 1.000000 0.251559 9 9 0.236842

qMax 0.550000 0.210529 8 8 0.210526

aPS: Number of parent sets used, W: Fraction of genes used as controls for normaliza-
tion, APE: Average probability error perfold, MIS: Number of misclassifications, ERR: Total
error count (misclassifications + nonclassifications), TER: Total error rate (including both
misclassifications and nonclassifications).
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Table 4. MIT Training Dataa

PS W APE MIS ERR TER

1 0.000000 0.065801 1 4 0.105263
1 0.100000 0.052644 1 3 0.078947
1 0.250000 0.065801 1 4 0.105263
1 0.400000 0.078959 1 5 0.131579
1 0.550000 0.078959 1 5 0.131579
1 0.700000 0.078959 1 5 0.131579
1 0.850000 0.065802 1 4 0.105263
1 1.000000 0.078959 1 5 0.131579
5 0.000000 0.072555 3 3 0.078947
5 0.100000 0.053353 2 2 0.052632
5 0.250000 0.072555 3 3 0.078947
5 0.400000 0.080379 3 3 0.078947
5 0.550000 0.080379 3 3 0.078947
5 0.700000 0.080379 3 3 0.078947
5 0.850000 0.061176 2 2 0.052632
5 1.000000 0.080378 3 3 0.078947

10 0.000000 0.072554 3 3 0.078947
10 0.100000 0.053351 2 2 0.052632
10 0.250000 0.072554 3 3 0.078947
10 0.400000 0.080378 3 3 0.078947
10 0.550000 0.080378 3 3 0.078947
10 0.700000 0.080378 3 3 0.078947
10 0.850000 0.061175 2 2 0.052632
10 1.000000 0.083038 3 3 0.078947
20 0.000000 0.072553 3 3 0.078947
20 0.100000 0.053351 2 2 0.052632
20 0.250000 0.072553 3 3 0.078947
20 0.400000 0.080377 3 3 0.078947
20 0.550000 0.080377 3 3 0.078947
20 0.700000 0.080377 3 3 0.078947
20 0.850000 0.061174 2 2 0.052632
20 1.000000 0.084275 3 3 0.078947
60 0.000000 0.070544 3 3 0.078947
60 0.100000 0.051839 2 2 0.052632
60 0.250000 0.071990 3 3 0.078947
60 0.400000 0.069324 3 3 0.078947
60 0.550000 0.070813 3 3 0.078947
60 0.700000 0.070774 3 3 0.078947
60 0.850000 0.050437 2 2 0.052632
60 1.000000 0.069833 3 3 0.078947

300 0.000000 0.057444 2 2 0.052632
300 0.100000 0.059049 2 2 0.052632
300 0.250000 0.072465 3 3 0.078947
300 0.400000 0.074483 3 3 0.078947
300 0.550000 0.074229 3 3 0.078947
300 0.700000 0.075196 3 3 0.078947
300 0.850000 0.056310 2 2 0.052632
300 1.000000 0.050879 2 2 0.052632
500 0.000000 0.065868 2 2 0.052632
500 0.100000 0.068942 2 2 0.052632
500 0.250000 0.080150 3 3 0.078947
500 0.400000 0.079164 3 3 0.078947
500 0.550000 0.078501 3 3 0.078947
500 0.700000 0.078683 3 3 0.078947
500 0.850000 0.074403 2 2 0.052632
500 1.000000 0.068241 2 2 0.052632

qMax 0.100000 0.052644 2 2 0.052632

aSee footnote for Table 3.
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Table 5. Out-of-Sample Results with External Gene Selection

Test Set Cases APE MIS ERR TER

Princeton 24 0.142092 2 2 0.083333
MIT 34 0.085831 2 2 0.058824

The tables indicate different best values across the two training sets for the fraction W of control genes
used in expression-level normalization and a greater sensitivity to this value in the Princeton training data.
This may be indicative of differences in experimental conditions, analysis preprocessing, and so forth. That
we can, without the benefit of descriptive procedural information as input, discover through methodical
application of cross validation good normalization parameters for each dataset is a significant finding. The
results against the test set presented in the following section indicate that these findings are not simply an
overfitting to the training data, but truly a learning of the underlying processes that generalizes well.

5.4. Out-of-sample test set results

Only after running the above experiments on the training sets did we turn attention to the test sets. Our
primary interest is to select the single method which performed best (lowest total error rate, TER) in the
cross validation experiments and assess its classification rate on the out-of-sample test sets. In this way,
we avoid a “selection effect” in which one of several methods run against the test set performs well.

Inspection of the tables of Sections 5.2 and 5.3 identifies the external gene selection method as being
preferable to the minimal knowledge greedy method in building parent sets for the Bayesian net classifier.
Since we have data from two different experimental contexts, it is proper to select the parameters for the
selected method (i.e., PS and W) based on performance in the cross validation trials on each training set;
such parameter setting would of course be performed in an actual classification application in which we
had access to training, but not query, cases in advance.

External gene-selection method against test data. Inspection of the tables in Section 5.3 indicates that,
against the Princeton training set, the best setting is PS = 500 (number of parent sets to be used in the
Bayesian net classifier) and W = 0.55 (control list fraction for normalization). Against the MIT training
set, several parameter settings resulted in the minimal TER of 0.052632. Somewhat arbitrarily, we selected
PS = 300 and W = 0.85.5 Using only these settings, we built the classifiers by training against the
38 cases of each of the two training sets and used the resulting classifiers to classify the cases of the
respective test sets.

The results are exhibited in Table 5 and are extremely good. The classifier had nearly identical error
rates against the MIT training and test sets (0.05 for training versus 0.06 for test) and a significantly lower
error rate against the Princeton test set (0.16 for training versus 0.08 for test). The results strongly suggest
that our multi-parent-set Bayesian net classifiers employing external gene selection and normalization
algorithms are able to learn from training data underlying distributions which generalize extremely well
to out-of-sample query cases whose classifications are of biological and clinical significance.

Comparison with other published results. The Appendix contains an extensive compilation of results
reported in the literature for the MIT and Princeton datasets, generated using a broad range of classifi-
cation methodologies. The high accuracies achieved in our results are particularly noteworthy given the
stringent nature of our “one-shot” testing approach: we have used parameter settings determined from cross-
validation results for the training dataset only, followed by a single pass at classifying the held-out test set.
Our results compare favorably even with those obtained using rather less stringent training/testing protocols.

5While we chose our single run to be made against the test set with PS = 300 and W = 0.85, in order to assess
the sensitivity of the results to this somewhat arbitrary choice of settings from among settings achieving equally good
TER, we later ran against the test set with several other settings which achieved the same TER against the training data.
The majority of those settings tried also incurred the same number, two, of misclassification errors as those reported
here, while a few others incurred three misclassifications errors.
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Table 6. Out-of-Sample Results with Greedy Selection

Test Set Cases APE MIS ERR TER

Princeton 24 0.145834 1 6 0.250000
MIT 34 0.279412 7 12 0.352941

Minimal-knowledge greedy methods against test data. After obtaining the results reported in the pre-
vious subsection for the external methods, we decided also to run our greedy methods against the test sets.
Since the greedy method’s results in the cross validation experiments were almost as good as the external
gene selection methods, we consider this to be an interesting avenue of research as well. We report the
results here in order to indicate potential directions for future work.

Table 6 reports the results against the two test sets of Bayesian net classification using the greedy
construction method. The only parameter considered in the cross validation against the training set was
PS, with the best settings found to be PS = 20 for the MIT training set and PS = 5 for the Princeton
training set.

Against the Princeton test set, the error rate was similar to the rate against the training set (0.18 for
training versus 0.25 for test), but it was significantly higher against the MIT test set (0.08 for training
versus 0.35 for test). We speculate that two sources of this lack of generalization, especially in the MIT
data, are our failure to normalize the data for the greedy experiments and the use of an overly rigid binning
method. This conjecture is consistent with the high number of “nonclassifications” against the test sets.
Note also that the MIT data was provided as two distinct datasets. Procedural differences in experimental
preparation and processing of the output between the sets as is described by Golub et al. (1999) may have
hampered the greedy method because it fails to normalize across the sets. In the case of the Princeton data,
where a single data set is randomly split, performance against the test set was much more comparable to
that of the training set.

Consequently, one avenue of future research is to include in the greedy method a normalization procedure
similar to that employed by the external gene selection method. Also, as noted in Section 4.1, there is a
concern that the greedy search may not provide a good representation of the space of possible parent sets.
We speculated that this might be the cause of the degradation observed in the cross validation experiments
for large values of PS. Note that the exhaustive (and, hence, completely representative) search of the
universe of externally selected genes resulted in large PSs performing best. The greedy method’s use of
small values of PS, in combination with the failure to normalize, certainly contributes to the large number
of nonclassifications in the test set. Hence, modifying the search to be more representative, as discussed
in Section 4.1, potentially could give minimal-knowledge searches such as greedy access to more good
parent sets, thereby addressing the large number of failure-to-classify errors that were observed.

6. SUMMARY AND FUTURE WORK

We have presented a methodology for applying Bayesian nets to the problem of classifying clinical cases
from their gene expression profiles. While Bayesian nets have been applied previously to identify relation-
ships among genes and have been proposed as classifiers for other problem domains, we have outlined new
methods for classification particularly well suited to gene expression data. Through a systematic experi-
mental design, we demonstrated that these classifiers, trained by means of a cross-validation methodology,
generalize extremely well to out-of-sample test data. In particular, we achieved error rates of 92% and 94%
on out-of-sample partitions of the MIT leukemia and Princeton colon cancer datasets, respectively. These
results are comparable to or better than those reported previously using other classification approaches,
even in those instances when less stringent train/test procedures were utilized.

Our Bayesian net classifiers are built by constructing alternative parent sets for the class label node and
use a posterior probability and variance-weighted blending of the resulting distributions. This blending of
the distributions induced by the competing hypotheses embodied by the alternative parent sets was seen
in our experimental results to yield improvements over the so called maximum a posteriori solution, in
which only the most likely hypothesis is used. We experimented with two methods for searching for good
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parent sets: a simple greedy search of the universe of all genes and an exhaustive search of a universe
of genes selected by a separation heuristic. The latter method produced better performing parent sets in
the experiments reported here. This method also employs a novel expression-level normalization scheme
based on algorithmically discovered control genes. Current work is considering improvements to both
methods for parent set construction and to normalization. We are exploring also how other aspects of the
problem—value binning and gene clustering, for example—can be studied within the framework.

It also is possible to incorporate into the model local structure, as described in Friedman and Goldzmidt
(1996b) and Chickering et al. (1997). While this has not been necessary for the classification tasks under-
taken to date, future work will explore the utility of this model extension in the gene expression domain.

We believe that Bayesian approaches to gene expression analysis, such as those described here and in
Friedman et al. (1999, 2000) and Pe’er et al. (2001), have enormous potential, not simply because of the
quality of the results achieved so far, but also because the mathematically-grounded formalism provides the
opportunity to expand systematically the range of problems treated, integrating newly developed algorithmic
techniques with an ever-increasing base of domain knowledge. Thus, results such as those reported here,
while significant in their own right, are only the first steps toward the ultimate construction of rigorous
and comprehensive models that promise to be of great scientific and clinical import.

APPENDIX: COMPILATION OF PUBLISHED CLASSIFICATION RESULTS

In this appendix, we list the feature selection and classification methodologies, testing procedures, and
accuracies that have been reported in the literature to date for the two datasets considered in this work.
Results for the MIT dataset are given in Table 7 Part A and for the Princeton dataset in Table 7 Part
B. Within the table, results are listed in order of decreasing testing protocol stringency (most stringent
appears first), and within stringency subcategory, in order of decreasing classification success rate. The
stringency hierarchy used to order the results is Separate Train/Test? followed by One-Shot Test? followed
by # Features. Due to the varied nature of the classification testing protocols utilized in the literature, the
detailed ordering of results in cases where multiple attempts were made is necessarily somewhat arbitrary.

REFERENCES FOR TABLES 7 PART A AND 7 PART B OF THE APPENDIX
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Biosciences 176, 71–98.

2. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M.L., Downing,
J.R., Caligiuri, M.A., Bloomfield, C.D., and Lander, E.S. 1999. Molecular classification of cancer: Class discovery
and class prediction by gene expression monitoring. Science 286, 531–537.
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KEY/NOTES

1. Separate train/test = N ⇒ classification is via LOO training on full train+test dataset, followed by
classification of the left-out sample.

2. One-shot test = Y ⇒ a single ‘best shot’ classifier is evaluated against the test set, after having been
selected from various possible combinations of classifiers/feature sets developed using the training set
only. If at any point in the algorithm (feature selection, f ; classifier parameter tuning, p; classifier
algorithm details, a) the test set is included in the procedure, this is considered to be “One-shot test =
N.” Test set results for multiple feature sets without an a priori (test-set-blind) method to select among
feature sets are reported as N(f ).

3. “Testing errors” should be interpreted as applying to the dataset implied by the “Separate train/test?”
column. The errors include actual errors + samples characterized as ‘unclassifiable.’

4. Train/test set is Golub et al. 38/34 (MIT) and 62 train+test (Princeton), unless otherwise indicated.
5. Boldface #genes/error #s correspond to best results in cases where one-shot test = N, and multiple

results are reported.

ABBREVIATIONS

ARD automatic relevance determination
BSS between classes sum of squares
CART classification and regression trees
DQDA diagonal quadratic discriminant analysis
DLDA diagonal linear discriminant analysis
DQDA diagonal quadratic discriminant analysis
FLDA Fisher’s linear discriminant analysis
GACV generalized approximate cross validation
KS Kolmogorov-Smirnov
LD logistic discrimination
LDA linear discriminant analysis
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LOOCV leave-one-out cross validation
MAR mean aggregate relevance
MPLS multivariate partial least squares
MVR median vote relevance
NBR naïve Bayes relevance
NBGR naïve Bayes global relevance
NN nearest neighbor
PAMD/CS pairwise absolute mean differences/critical score (multiclass generalization of t-score)
PC principal components
PCI parallel cascade information
PD polychotomous discrimination (multiclass generalization of logistic discrimination)
PLS partial least squares
QDA quadratic discriminant analysis
SVD singular value decomposition
SVM support vector machine
WSS within class sum of squares
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