
Methods to determine the number of clusters in a data set

Data set: xi , i=1…N points in Rp

(each coordinate is a feature for the clustering)

Clustering method: e.g. hierarchical with given choices of metric and link function, or 
k-means with given choice of metric

With method and K (#  clusters), we obtain a partition of the points: P(K) = {C1…CK} 
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Define a measure of “quality” of the partition in K clusters:

Using so-called internal indexes, e.g.

a. dissimilarity/distance within the clusters

b. Silhouettes

Or, making internal use of a so-called external index, measure

c. Stability of the partition with respect to perturbations by deletion

d. Internal reproducibility (predictability) of the partition

Based on the values of this measure on K=(1),2… use a rule to chose K: 

i. The rule can be a simple descriptive criterion

ii. Or it can involve simulating a (null) reference scenario of no-clustering



a. Within cluster dissimilarity/distance
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Squared distances from centroids
(within clusters sum of squares). This is 
what k-means finds a local min for.

Dissimilarity levels at which clusters are formed.

Low values when the partition is good, and thus K appropriate. BUT this is by 
construction monotone non-increasing in K (more clusters always means smaller 
within cluster dissimilarity). Can consider:
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Relative improvement when passing from K to K+1 (with correction). Not 
monotone.



b. Average Silhouette
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How well a data point is clustered

Averaging over points, overall quality of the partition

High values when the partition is good, and thus K appropriate. This is not 
monotone in K.



External Indexes

Measuring the similarity between two partitions P and Q of the same set of 
points (but can have different number of clusters), e.g. Rand index
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Standardizing to a number in [0,1]. E under 
random partitions. Max depends on the number 
of clusters in the two partitions.

Can be used to evaluate a P(K) by consistency with a KNOWN partition Q.

Here we use another perspective: we adopt an external index (i.e. a measure of 
similarity between partitions) for internal use… as follows.



c. Stability (to random deletions)

1.  For m=1…M
- form a perturbed data set X(m), deleting f% of the points at random 
(resample without replacement (1-f)% of the points).

- apply the clustering to X(m) obtaining P(K,X(m))

2. Compute the similarities 
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To observed partition (restrict to X(m))

Among perturbed partitions (restrict to X(m)’s intersection)

3. Summarize these similarities, e.g. with their median, to get Stb(K).

High values when the partition is good, and thus K appropriate. This, too, is not 
monotone in K.



d. Internal reproducibility (predictability)

1.  For m=1…M
- form learn and test data sets L(m), T(m) splitting the points at random
- apply the clustering to L(m) obtaining P(K,L(m))
- use P(K,L(m)) to train a supervised classifier
- create a predicted partition P*(K,T(m)) applying the classifier to T(m)
- apply the clustering to T(m) obtaining P(K,T(m)

2. Compute the similarities 
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Among predicted and actual partition of T(m)

3. Summarize these similarities, e.g. with their median, to get Prd(K).

High values when the partition is good, and thus K appropriate. This, too, is not 
monotone in K.



i. Choosing K based on simple descriptive criteria.

Smallest K after which there is a drop > t
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For instance:

Silhouette approach

Hartigan approach

Stability approach

(Ben-Hur et al.) 
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i. Simulating a no-clustering reference scenario

Chose a null distribution on Rp expressing no-clustering, and

1.  For b=1…B

- draw a data set Xo(b) of size n from the null distribution

- For K = (1),2… apply the clustering to Xo(b) obtaining P(K,Xo(b))

2. Compute the quality statistics 

(reproducing the calculations previously described on the actual data set X)

3.   For each K = (1), 2… create summaries
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Estimated expected value 
and variability of the statistic 
under the null.

Empirical p-value 
corresponding to the 
statistic observed on the 
actual data
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Now can formulate decision rules for K based on these summaries. For instance

Gap approach (Tibshirani et al.)
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CLEST approach (Dudoit et al.)

)(max ,)( such that   thoseamong  : ˆ
)()()(

)(Prd)(

KdKpK

KqKqualKd
KKqual

Kπ≤

−=
=



Important: how does one select the reference distribution?

Most often used no-clustering scenarii, UNIFORMS.
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Useful references:
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structure in clustered data. Proceedings of PSB 2002.

Tibshirani R, Walther G, Hastie. T (2001): Estimating the Number of Clusters
in a Dataset via the Gap Statistic. Technical report, Dept of Biostatistics,
Stanford University. More recent reference?
[http://www-stat.stanford.edu/~tibs/research.html]

Dudoit S, Fridlyand J (2002) A prediction based resampling method for estimating 
the number of clusters in a data set. Genome Biology. 


