Methods to determine the number of clusters in a data set

Data set: x;, i=1...N points in RP
(each coordinate is a feature for the clustering)

Clustering method: e.g. hierarchical with given choices of metric and link function, or
k-means with given choice of metric

With method and K (# clusters), we obtain a partition of the points: P(K) = {C;...C,}
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Define a measure of “quality” of the partition in K clusters:

Using so-called internal indexes, e.g.

a. dissimilarity/distance within the clusters

b. Silhouettes

Or, making internal use of a so-called external index, measure

c. Stability of the partition with respect to perturbations by deletion

d. Internal reproducibility (predictability) of the partition

Based on the values of this measure on K=(1),2... use a rule to chose K:
I.  The rule can be a simple descriptive criterion

ii.  Or it can involve simulating a (null) reference scenario of no-clustering



a. Within cluster dissimilarity/distance

Squared distances from centroids

_ o O 2 L=
W(K) = a a. d (Xi , Xj) (within clusters sum of squares). This is
171Kl C, what k-means finds a local min for.
o .
W(K) = d
( ) jg_K (J) Dissimilarity levels at which clusters are formed.

Low values when the partition is good, and thus K appropriate. BUT this is by
construction monotone non-increasing in K (more clusters always means smaller
within cluster dissimilarity). Can consider:

H(K) :g(K>W“§3&N$ *1

Hartiganindex, correction g(K) =n- k-1

Relative improvement when passing from K to K+1 (with correction). Not
monotone.



b. Average Silhouette

1
dic = a d(x,x)
°” #(C) iic A
a = di,C(i) b = minC1C(i) di ¢
. _ b-a -
Sl = ' How well a data point is clustered
meax{ &, 0}

. 1 .
S| (K) = é_ s||i Averaging over points, overall quality of the partition
i=1...N

High values when the partition is good, and thus K appropriate. This is not
monotone in K.



External Indexes

Measuring the similarity between two partitions P and Q of the same set of
points (but can have different number of clusters), e.g. Rand index

mand = 7.1 together in both Pand Q}+#{(i,!) NOT together in both Pand Q}
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— Rand - E(Rand) Standardizing to a number in [0,1]. E under
Max(Rand) - E(Rand) random partitions. Max depends on the number
of clusters in the two partitions.

Can be used to evaluate a P(K) by consistency with a KNOWN patrtition Q.

Here we use another perspective: we adopt an external index (i.e. a measure of
similarity between partitions) for internal use... as follows.



c. Stability (to random deletions)

1. Form=1...M
- form a perturbed data set X(m), deleting f% of the points at random
(resample without replacement (1-f)% of the points).
- apply the clustering to X(m) obtaining P(K,X(m))

2. Compute the similarities
R(K,m) = R(P(K),P(K, X(m))) m=1..M
or To observed partition (restrict to X(m))

R(K, m, /) = R(P(K, X (m)), P(K, X (M))) m<m=1..M

Among perturbed partitions (restrict to X(m)’'s intersection)
3. Summarize these similarities, e.g. with their median, to get Stb(K).

High values when the partition is good, and thus K appropriate. This, too, is not
monotone in K.



d. Internal reproducibility (predictability)

1. Form=1...M
- form learn and test data sets L(m), T(m) splitting the points at random
- apply the clustering to L(m) obtaining P(K,L(m))
- use P(K,L(m)) to train a supervised classifier
- create a predicted partition P*(K,T(m)) applying the classifier to T(m)
- apply the clustering to T(m) obtaining P(K,T(m)

2. Compute the similarities

R(K,m) = R(P* (K, T(m)),P(K,T(m)) m=1..M
Among predicted and actual partition of T(m)
3. Summarize these similarities, e.g. with their median, to get Prd(K).

High values when the partition is good, and thus K appropriate. This, too, is not
monotone in K.



I. Choosing K based on simple descriptive criteria.

Smallest K within t of
the maximal K

T T
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number of clusters K

Smallest maximal K

Smallest K after which there is a drop > t



For instance:

Silhouette approach

Hartigan approach

Stability approach
(Ben-Hur et al.)
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I. Simulating a no-clustering reference scenario
Chose a null distribution on RP expressing no-clustering, and
1. Forb=1...B
- draw a data set X (b) of size n from the null distribution
- For K =(1),2... apply the clustering to X (b) obtaining P(K,X (b))
2. Compute the quality statistics
qual (K,b) =qual (P(K, X, (b)) b=1..B,K=(),2,..
(reproducing the calculations previously described on the actual data set X)

3. Foreach K= (1), 2... create summaries

qg(K) = i é gual (K,Db) Estimated expected value
Bois and variability of the statistic
under the null.

1 o _
sd(K) = 5.1.a (qual (K,b)- g(K))*
. b=1..B Empirical p-value
ding to th
p(K) =< #{b:qual (K,b)* qual (K)}  itic observed on the
actual data
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Frequency

P(K)

g-bar(K) q(K) (observed)

d . %
sd(9 ~

Difference or Gap




Now can formulate decision rules for K based on these summaries. For instance

Gap approach (Tibshirani et al.)
qual (K) =log(W(K))
gap(K) = qual (K) - q(K)

séRK) =gsd(K) correction g = ‘/1+é
K" :max, gap(K)

K : smallest such that gap(K) 3 gap(K')- sd(K")

CLEST approach (Dudoit et al.)
gual (K) = Prd(K)
d(K) =qual (K) - q(K)

Pa

K : among those such that p(K) £ p, max, d(K)



Important: how does one select the reference distribution?

Most often used no-clustering scenarii, UNIFORMS.
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