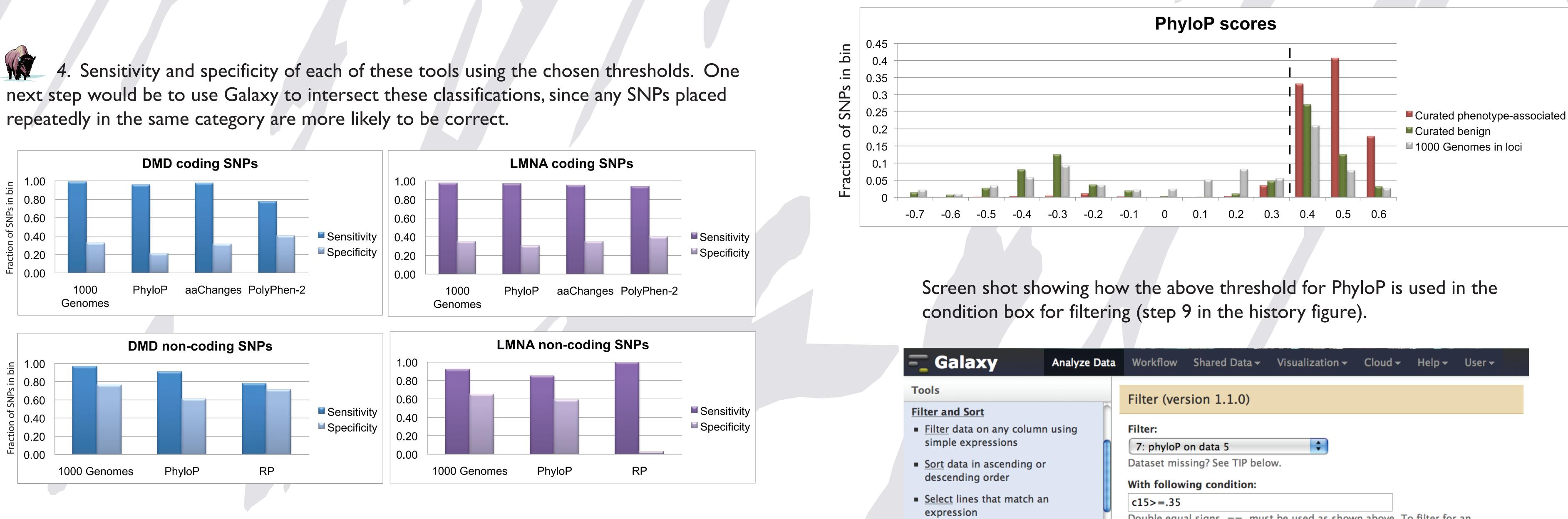
PENNSTATE University

*Belinda Giardine¹, Burhans R.¹, Riemer C.¹, Ratan A.¹, Harris R.¹, den Dunnen J.T.², Hardison R.C.¹, Zhang Y.¹, Miller W¹. I. The Pennsylvania State University, Center for Comparative Genomics and Bioinformatics, University Park, PA, USA 2. Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands Corresponding author: giardine@bx.psu.edu


Galaxy is a free, powerful computational framework and service that allows users to run a wide variety of tools on their data in a highly interoperable manner. It provides a means for SNP analysis, along with a transparent setting for sharing both the methods used and results. We illustrate the power of SNP tools in Galaxy by employing several of them to

evaluate a large set of SNPs in the DMD gene and a smaller set in the LMNA gene.

Some mutations in the DMD gene are known to cause Duchenne's muscular dystrophy, while mutations in the LMNA gene are associated with several diseases. We evaluate both coding and non-coding SNPs, predicting which are likely to be damaging. To assess the effectiveness of the tools, we compare these results to a knowledge-based determination from an expert. In both the test and reference sets, SNPs of unknown significance are classified as phenotype-associated.

On the right is a Galaxy history showing the assortment of tools we used to classify SNPs obtained from the corresponding LMDp databases^(a) for these two loci.

1: DMD SNF 2: 1kg.2012 3: Separate 4: Intersect 5: Join on d 6: Filter on 7: phyloP o 8: Histogra 9: Filter on 10: UCSC G 11: aaChang 12: polyphe 13: Intersec

5. Similar analyses can be performed with other software, or by using these same tools outside of Galaxy. However, using Galaxy has a number of advantages:

- . Galaxy is free.
- 2. Galaxy is a do-it-yourself framework; you choose the tools and datasets you want.
- 3. With Galaxy it is easy to experiment and fine-tune the parameter settings as needed.
- 4. Workflows make it simple to repeat exactly the same steps on different datasets.

References:

Using Galaxy to separate potentially functional and benign SNPs

Example Galaxy History

<u>s</u>	۲
.pgSnp	۲
pgSnp alleles on data 2	۲
on data 1 and data 3	۲
ata 4 and data 1	۲
data 5	۲
n data 5	۲
<u>n on data 7</u>	۲
data 7	۲
enes	۲
ges on data 10 and data 7	۲
n-2.whess.damaging.txt	۲
t on data 12 and data 7	۲

2. Some of the tools, such as aaChanges and PolyPhen2, examine the effect of SNPs on amino acids. For non-coding SNPs, we can use the Regulatory Potential (RP) score^(b) to predict whether they are likely to be functional. And other approaches can be applied anywhere in the genome, such as PhyloP conservation scores^(c) between species. Even the mere occurrence of a SNP in the genomes of more-or-less healthy people, such as those in the 1000 Genomes Project^(d), can have predictive value for non-complex diseases.

Example: the aaChanges tool shows good overlap between its phenotype-associated predictions and the curated SNP set.

3. Some of these tools have a score threshold that can be adjusted, i.e. the cutoff value used to separate the two classes of SNPs. To choose these, we plotted the score distributions of the curated SNPs, along with those of all the 1000 Genomes SNPs in our two loci (just as a background reference), and selected a value that appeared to best distinguish the SNPs curated as phenotype-associated from those curated as benign. We chose to slightly favor sensitivity over specificity. This led to PhyloP and RP score thresholds of 0.35 and -0.005, respectively. For the 1000 Genomes occurrence criterion, we used the frequency count as the score, and settled on a threshold of I (i.e. any SNP appearing in 1000 Genomes at all was classified as benign, while absent => phenotype-associated). The aaChanges and PolyPhen2 tools do not require any parameters.

Diana Kolbe, James Taylor, Laura Elnitski, Pallavi Eswara, Jia Li, Webb Miller, Ross Hardison and Francesca Chiaromonte. Regulatory Potential Scores from Genome-Wide 3-way Alignments of

(c) Cooper GM, Stone EA, Asimenos G, NISC Comparative Sequencing Program, Green ED, Batzoglou S, Sidow A. Distribution and intensity of constraint in mammalian genomic sequence.

Galaxy: usegalaxy.org Supplement: https://main.g2.bx.psu.edu/u/Belinda/p/snp-classification SNP tutorials: www.bx.psu.edu/miller lab

DMD

The Galaxy software framework provides a variety of tools that can be used to help distinguish SNPs that are potentially deleterious from those that are probably benign. Here we illustrate results from several of these tools, and show that with appropriate parameter selection they can produce a reasonable emulation of curated classification.

> Predicted to be phenotypeassociated by aaChanges 706 165

Galaxy	Analyze Data	Workflow	Shared Data -	Visualization -	Cloud -	Help -	
ools		Filter (version 1.1.0)					
Iter and Sort							
Filter data on any column using simple expressions		Filter: 7: phyloP on data 5					
<u>Sort</u> data in ascending o descending order	r	Dataset missing? See TIP below. With following condition:					
Select lines that match an expression Filter on ambiguities in polymorphism datasets		c15>=.35					
		Double equal signs, ==, must be used as shown above. To filter for a					
		arbitrary string, use the Select tool.					
		Number of header lines to skip:					
GFF		0					
Extract features from GF	F data						
Filter GFF data by attribu	<u>ute</u> using	Execute					
simple expressions							

Acknowledgements:

⇒ Galaxy Development Team

Filter on

Extract

Filter GF

⇒ Funding for our work on assembling and documenting the Phenotype Association tools was provided by Grant Number ULI TR000127 from the National Center for Advancing Translational Sciences (NCATS). This project is funded, in part, under a grant with the Pennsylvania Department of Health using Tobacco CURE Funds. The Department and NIH specifically disclaim responsibility for any analyses, interpretations, or conclusions.

Curated as phenotype-associated

an

⁽a) Leiden Muscular Dystrophy pages (www.dmd.nl)

Human, Mouse and Rat. Genome Research 14: 700-707.

Genome Res. 2005 15(7):901-13.

⁽d) McVean et al, An integrated map of genetic variation from 1,092 human genomes, Nature 491, 56–65 (01 November 2012)