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Abstract. For a genomic region containing a tandem gene cluster, a
proper set of alignments needs to align only orthologous segments, i.e.,
those separated by a speciation event. Otherwise, methods for finding re-
gions under evolutionary selection will not perform properly. Conversely,
the alignments should indicate every orthologous pair of genes or ge-
nomic segments. Attaining this goal in practice requires a technique for
avoiding a combinatorial explosion in the number of local alignments.
To better understand this process, we model it as a graph problem of
finding a minimum cardinality set of cliques that contain all edges. We
provide an upper bound for an important class of graphs (the problem is
NP-hard and very difficult to approximate in the general case), and use
the bound and computer simulations to evaluate two heuristic solutions.
An implementation of one of them is evaluated on mammalian sequences
from the α-globin gene cluster.

1 Introduction

The ENCODE project [22] has the goal of identifying all functional genomic seg-
ments in 1% of the human genome. As part of the project, genomic sequence data
from a number of mammals are being generated for the targeted 1%, in the belief
that alignment and analysis of the sequences will help predict the functional seg-
ments. Several computer programs for aligning genomic regions have been used
for this purpose [15,16]. In our opinion, the current crop of alignment programs
performs acceptably in many parts of the genome. However, for regions contain-
ing tandem gene clusters, more software development is necessary. The deficiency
of current methods can be explained using the following long-accepted concepts.

According to standard biological jargon [6,7], two sequences are homologs if
they are evolutionarily related, in which case they diverged at either a duplication
event (and are called paralogs) or a speciation event (and are called orthologs).
It is widely appreciated that a basic goal of alignment algorithms is to align
sequences if and only if they are homologs. We feel that a better statement of
the goal is to align precisely the orthologs. That is, we want the evolutionary
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relationship among aligned sequences to be the same as the phylogenetic tree
relating the species for those sequences. A main (and probably the main) use of
alignments is to identify intervals within the aligned segments in which the sim-
ilarity/divergence pattern differs from neutral evolution, and modern methods
for detecting such intervals [21,5,23] require, for their proper functioning, that
aligned rows be orthologs. In regions of the genome where no intervals have been
duplicated, orthology is equivalent to homology, and existing alignment methods
are effective. However, for tandem gene clusters, we know of no existing aligner
that does a good job.

To represent duplications and other large-scale evolutionary rearrangements,
our programs for aligning several genomic sequences produce a set of alignment
“blocks”, each of which is in essence a traditional alignment of segments from the
given sequences or their reverse complements [2]. With duplications, the same
sequence position can appear in several blocks. It is useful to note that if rows of
a block are pairwise orthologous, then no two rows can be from the same species.

To build a new alignment program that obeys the two requirements

(a) any two rows of a computed block are orthologous and
(b) any pair of orthologous positions appears together in at least one block,

two hurdles had to be overcome. The first was to distinguish orthologs from
paralogs, and for this there was a large literature to draw from. We provide
our solution in another paper [11]. The second difficulty was that the num-
ber of possible blocks can grow exponentially with the number of sequences
and duplications, which is the topic of this paper. For instance, a straightfor-
ward implementation meeting our requirements produced over 900 Mbytes of
alignments when applied to intervals containing the α-globin gene clusters of 20
mammals, where the total length of the original sequences was only 3.9 Mb. We
designed and implemented a space-saving strategy that decreased the amount
of output to 8.7 Mb, while still fulfilling requirements (1) and (2). New ideas
were required to achieve this savings, and we were led to the development of
a theoretical model that turned out, in the general case, to be equivalent to a
previously studied NP-complete combinatorial optimization problem, which we
will call MinCliqueCov, namely, finding a minimum cardinality set of cliques
that contains all edges of a given undirected graph. We show that the graphs we
study have special properties, and they can be utilized to apply divide-conquer
techniques, which would not work well with an arbitrary graph.

Here we describe our graph-theoretic model and derive a theoretical upper
bound on the number of blocks that are needed to meet our requirements in
an important subclass of problems. Also, using the model, we formulate two
heuristic methods, and with the help of our upper bound and some computer
simulations, we measure where the two methods lie in the tradeoff between
computation time and output size. We also compare our solutions to an existing
heuristic method for general graphs [13]. Finally, we describe the performance on
the α-globin gene cluster of our alignment software that is based on the new ideas.
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2 Methods

2.1 A Graph-Theoretic Model

Let G = (V, E) be a graph with vertex set V and edge set E. An m-vertex
complete subgraph of G is called an m-clique. A clique cover of G is a set of
cliques whose edges contain every edge e ∈ E. The clique cover number, cc(G),
of G is defined to be the minimum number of cliques in a clique cover of G.

Assume we align genomic sequences from K species in a genomic region con-
taining a family of tandemly duplicated genes. Suppose that each member of
that gene family can be aligned to every orthologous member. In our model,
a vertex represents a gene in one of the species, and there is an edge between
two vertices if the genes that they represent are orthologous. Thus, we obtain a
K-partite graph, called an alignment graph, where each part contains the nodes
that represent the gene family members in a given species. A multi-alignment
block with pairwise orthologous rows corresponds to a clique, and a set of multi-
alignment blocks that contains every pairwise alignment (condition (2) in the
Introduction) corresponds to a clique cover. Thus it would be helpful to solve
MinCliqueCov for the alignment graph. Figure 1 gives an example in which
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Fig. 1. A trivial example on minimum clique cover. Panel 1 shows 8 cliques to cover
all edges, while panel 2 shows 4 cliques to cover all edges.

there are three species (A, B and C), each containing two members of a gene
family. Each pair of genes from different species is orthologous. In these example,
there are eight possible alignment blocks, but four blocks are sufficient to include
each orthologous pair in a block.

Unfortunately, MinCliqueCov is NP-hard [17]. The restriction to multi-
partite graphs does not make this problem easier since a graph of n vertices
is trivially an n-partite graph in which each part has only one vertex. Various
techniques have been applied to solve MinCliqueCov and closely related prob-
lems [9,18,3]. For instance, when the degree of any vertex in G is at most 4, the
problem is solvable in linear time [19].

2.2 A Special Case

In this section, we investigate the graph structure that arises under certain nat-
ural conditions, namely when all duplications have occurred after all speciation
events. That is, we suppose that each gene is orthologous to every gene in a
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different species. Moreover, to keep things simple, we supposed that each of K
species has precisely P copies of the gene. The resulting alignment graph is a
complete K-partite graph: each part has P nodes, and there is an edge between
any two nodes that are in two different parts. We denote such a graph by GK,P .
Note that the shape of such graph is determined for each pair of K and P .
Thus MinCliqueCov restricted to graphs of the form GK,P has O(n) distinct
instances with n nodes, where n = KP (because n can be factored into KP in
less than n ways). It was shown that problems with polynomially many instances
per size cannot be NP-hard (unless P=NP) [1]. But even for the case of P = 2,
we do not know the exact solution. The technical result of this paper does not
imply the problem is easy either. The purpose of this section is to derive a non-
trivial upper bound on cc(GK,P ), which will help us to interpret the results of
simulations that we report below.

First, though, let us mention lower bounds. For K ≥ 2, cc(GK,P ) ≥ P 2, since
there are P 2 edges between any two parts of the graph, and any clique can contain
at most one of those edges. Moreover, it was recently proved that cc(GK,P ) ≥
logb(KP ), where b = P

(P−1)(P −1)/P [4]. That lower bound is approximately equal
to P (logP K + 1).

For an upper bound, it has been known for some time that cc(GK,2) =
Θ(log2 K) [9], but we seek a bound for general P . Assume GK,P has the fol-
lowing node set and edge set:

V = {u(i, j) : 0 ≤ i < K and 0 ≤ j < P}
E = {{u(i, j), u(k, l)} ⊂ V : i �= k}

To present a recursive construction of small clique covers of GK,P , we start with
two simple observations.

Observation 1. Let U ⊆ V . If C is a clique cover of G, then {C ∩U : C ∈ C}
is a clique cover of G(U). Thus cc(G(U)) ≤ cc(G).

Observation 2. If Ci is a clique cover of < V, Ei > for i = 1, 2 . . . , k then⋃k
i=1 Ci is a clique cover of < V,

⋃k
i=1 Ei >.

The edges of GK,P can be split into two sets

E0 = {{u(i, j), u(k, l)} ∈ E : j = l}
E1 = E − E0

We can cover < V, E0 > with cliques Cj = {u(i, j) ∈ V }, j = 0, . . . , P − 1. Now
it remains to find a clique cover for G1

K,P =< V, E1 >.
If there are K = M × L species, the edges of G1

ML,P can be represented as
E2 ∪ E3, where

E2 = {{u(i, j), u(k, l)} ∈ E1 : 
i/L� �= 
k/L�}
E3 = {{u(i, j), u(k, l)} ∈ E1 : i mod L �= k mod L}

To make that split more intuitive, put the ML parts of GML,P into a matrix
with M rows and L columns. An edge between different parts will either connect
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parts from different rows, or parts from different columns. Denote the set of edges
connecting parts from different rows by E2, and the set of edges connecting parts
from different columns by E3. Note that E2 and E3 are not necessarily disjoint.

Lemma 1. cc(< V, E2 >) ≤ cc(G1
M,P ).

Proof. Consider a clique cover C of G1
M,P . Obtain C′ by transforming each clique

C ∈ C into

C′ = {u(i, j) ∈ V : u(
i/L�, j) ∈ C}.
C′ is still a clique, because if 
i/L� �= 
k/L� than i �= k. Now an edge e =
{u(i, j), u(k, l)} of E1 is covered by C′ unless 
i/L� = 
k/L�, hence e �∈ E2. ❐

Lemma 2. cc(< V, E3 >) ≤ cc(G1
L,P ).

Proof. Similar to Lemma 1. ❐

Lemma 3. cc(G1
P,P ) ≤ P (P − 1) if P is prime.

Proof. We construct a set of cliques Ca,b = {{u(i, ai + b mod P ) : 0 ≤ i < P}
where 0 < a < P and 0 ≤ b < P . Given an edge {u(i, j), u(k, l)} ∈ E1 we can
find the parameters a, b of the clique that covers it by solving linear system

ai + b = j mod P

ak + b = l mod P

This system yields the following equation for a: a(i−k) = j− l mod P . Because
i �= k, i − k has a reciprocal mod P , and because j �= l, the a computed from
this is non-zero. ❐

Theorem 1. cc(GK,P ) ≤ P + P (P − 1)�logP K if P is a prime.

Proof. By Observation 1, it suffices to prove that cc(GK,P ) ≤ P + aP (P − 1)
for K = P a, where a is an integer. Because we can cover E0 with P cliques, it
suffices to prove that cc(G1

K,P ) ≤ aP (P − 1). We can show it by induction on a.
For a = 1 this is proven in Lemma 3. Assuming it is proven for a − 1, we have
K = ML where M = P and L = P a−1. This allows to apply Lemmas 1 and 2
to show that cc(G1

K,P ) ≤ (a − 1)P (P − 1) + P (P − 1) = aP (P − 1). ❐

When P is not a prime, we can use the above result for P ′, where P ′ is the
smallest prime larger than P . For example, when P = 6 and K = 2, we have a
trivial solution with 36 cliques (indeed, edges), but when K = 3, we can use a
solution for P ′ = 7 that has 49 cliques, and this solution works for K ≤ 7, while
for K ≤ 343 we have a solution with 7 + 2 × 42 = 91 cliques.

Of course, better solutions may exist. It is easy to find a solution for G1
3,4

with 12 cliques; see Figure 2. We can apply the reasoning of Theorem 1 to
show that cc(GK,4) ≤ 4 + 12�log3 K which, except for K = 4, 5, is better than
5 + 20�log5 K. Thus, cc(GK,P ) is at most P (P − 1) logP K + P when P is a
prime number and K is in power of P . In cases that P and K do not satisfy these
conditions, the values can be approximated by the nearest prime number and its
power. This upper bound is conjectured to be tight, but this has not been proved.
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︷ ︸︸ ︷
{a0, b0, c0}
{a1, b1, c1}
{a2, b2, c2}
{a3, b3, c3}

︷ ︸︸ ︷
{a0, b1, c2} {a1, b0, c3} {a2, b0, c1} {a3, b0, c2}
{a0, b2, c3} {a1, b2, c0} {a2, b1, c3} {a3, b1, c0}
{a0, b3, c1} {a1, b3, c2} {a2, b3, c0} {a3, b2, c1}

E0
E1

Fig. 2. Clique cover of G3,4 with 16 cliques

2.3 Heuristic Solutions

MinCliqueCov is NP-hard, but also has no efficient approximation algorithm
unless NP=P [14], so we have to use heuristics. We propose two heuristic methods
for generating clique covers for complete multi-partite graphs studied in the pre-
vious section. It is then relatively straightforward to adapt these methods for the
multi-alignment problem in tandem gene clusters, even in the general case of ar-
bitrary orthology relationships; the next section discusses some of the issues that
arise. However, in the idealized setting of GK,P , with the upper bound derived
above, we can evaluate how close they come to an ideal reduction in output size.

Both heuristic methods follow a divide-and-conquer strategy: Partition G into
two graphs, G1 and G2, each having about K/2 parts, find clique covers CC1

and CC2 of G1 and G2 respectively, and merge them to obtain a clique cover
CC of G. While these methods do not give the fewest cliques, they efficiently
find a relatively small clique cover. The merge procedures can be described as
follows, where “uncovered” refers to an edge not currently in a clique in CC.

Heuristics for MinCliqueCov were studied already in 1978 [13]. Recently an
exact solution was also proposed [8] for the general graph. Unfortunately, our
complete multi-partite graph is quite dense, and the reduction rules from [8] can-
not be applied here. Thus we only compare our heuristic methods’ performance
with [13]’s method.

Merge I forms a new clique from the pair of cliques that maximizes the number
of additional covered edges. Merge II processes cliques of CC1 and CC2 in a
random order and forms any new clique that covers at least one new edge.
Running times are dominated by the number of executions of the loops 2a and 2b,
respectively, which are essentially the number of cliques generated. The lowest-
level operation inside loop 2a is to examine whether an edge is covered or not;
for loop 2b it is to decide whether a clique contains a certain edge or not. Both
operations involve an array access and can be regarded as taking unit time. The
number of unit operations inside loop 2a is |CC1| · |CC2| ·K1 ·K2, where K1 and
K2 are the number of partitions (species) of G1 and G2. The number of unit
operations inside loop 2b is |CC1| · K1 + |CC2| · K2. The performance of these
two methods, in terms of both actually running time and the number of cliques
generated, is analyzed below.

2.4 Application in the Aligner Program

The above divide-and-conquer methods can be adapted to so-called “progressive”
multiple alignment programs, which work leaves-to-root in the phylogenetic tree
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Merge I (CC1, CC2)
1 CC ← φ
2a while there exists an uncovered edge
3 For each pair of cliques ci and cj from CC1 and CC2 respectively
4 uij ← the number of uncovered edges of ci ∪ cj

5 (cmaxi, cmaxj)← the pair with maximum uij

6 insert cmaxi ∪ cmaxj to CC
7 Output CC

Merge II (CC1, CC2)
1 CC ← φ
2b while there exists an uncovered edge (u, v) between subproblems
3 c1 ← a clique from CC1 that contains u
4 c2 ← a clique from CC2 that contains v
5 insert c1 ∪ c2 into CC
// We still have to incorporate unused cliques from each subproblem
6 while there exists an unused clique c1 from CC1

7 c2 ← an unused clique in CC2; if none, then any clique in CC2

8 insert c1 ∪ c2 into CC
9 while there exists an unused clique c2 from CC2

10 c1 ← an unused clique in CC1; if none, then any clique in CC1

11 insert c1 ∪ c2 to CC
12 Output CC

for the given species. At a tree node, these aligners merge multiple alignments
from the sub-trees, which is analogous to merging cliques for subgraphs G1 and
G2, except that the split into subproblems might not be balanced. The process of
merging blocks from the left and right subtree is guided by pairwise alignments
between a species in the left subtree and a species in the right subtree. The set of
multi-alignment blocks corresponding to the tree’s root constitutes the multiple
alignment of the original K species.

Thus, the use of the guide tree by the aligner can be viewed as the recursive
partition of the alignment graph, and such a partition can be used both by Merge
I and Merge II. In our current BOAST aligner, we have decided to apply Merge
II since our tests indicated that Merge I could be about 1000 times slower (see
Figure 4). While Merge I produced fewer cliques(see Figure 3), i.e., alignment
blocks, Merge II produced a number that was acceptably small.

We need to address the following issue. The alignment graph generally has
fewer edges than a complete K-partite graph, since some speciation events are
preceded by duplications. Consider what we should expect if we have a perfect
alignment graph, with all ortholog/paralog relationships properly diagnosed. We
have two siblings T1 and T2 with common ancestor T and let ci be a clique in
the subgraph of Ti, i = 1, 2. One can see that either c1 ∪ c2 is also a clique, or
there are no edges between c1 and c2 (see [11] for the analysis of orthologous
inference). In this case, when Merge II selects a pair of cliques with union that
covers at least one new edge (lines 3-4), this union is a clique. When Merge II
processes an unused clique c1 in line 7 and 10, we first look for a clique c2 in
another sub-tree that is connected to c1, and the union of them becomes a new
clique; if none exists we simply add c1 to the output.
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Clearly, this adaptation may be incorrect if we have an imperfect alignment
graph, ie., with some edges established wrongly and some correct edges missing.
Consequently, it may happen that a pair of selected cliques, c1 and c2, has some
connections, but not all. If only a minority of the possible edges between c1 and
c2 are present, we behave as if c1 and c2 were not connected at all, and if the
majority is present, we behave as if c1 ∪ c2 was a clique. This majority criterion
can have the effect of correcting some errors created by incorrect identification
of orthologous pairwise alignments [11]. Note that we have to choose between
two kinds of discrepancies in the output. One is that we do not include all actual
orthologous relationship in a blocks. The second is that we contaminate a block
with a paralogous relationship. If one kind of discrepancy is more harmful than
the other, we can replace the majority criterion with some other ratio.

3 Results

3.1 Simulations

Methods Merge I and II were tested on graphs of the form GK,P , i.e, complete
K-partite graphs, where each part has P nodes. The results are plotted in
Figure 3(a) and 3(c), which shows that Merge I substantially outperforms Merge
II. Values of upper bound P + P (P − 1)�logp K are shown in Figure 3(b). The
bounds for P=4 are determined by cc(GK,4) ≤ 4 + 12�log3 K discussed below
Theorem 1. The lower bound from [4] is lower than the trivial P 2 bound in most
of our cases, so we do not show it in the figure.

Though Merge I produces fewer cliques, it requires a longer running time.
To estimate the difference in CPU requirements, we counted the numbers of
previously described unit operations, so the impact of different number of cliques
produced by the two methods is included. Although it is possible to improve the
time efficiency of Merge I by designing better data structures, Merge I will
always be slower than Merge II.

The heuristic method from [13] takes even more time than Merge I, so its run-
ning time analysis is not shown here. However, we plot its clique numbers. As
shown in Figure 3(d), it produces more cliques than Merge II for any instances.

3.2 α-Globin Gene Cluster

A recent study carefully identified ortholgous genes in the α-globin clusters of
a number of mammals [12]. There are four types of genes in those clusters: ζ,
αD, α and θ. Each species discussed below has exactly one αD-related gene, so
those genes are not pertinent to this analysis. The studied species have 1 to 3
ζ-related genes, 1 to 4 α-related genes, and 0 to 3 θ-related genes (counts include
pseudogenes). Table 1 shows details. Each gene copy is regarded as a node in
our graph.

Our earlier TBA program [2,15,16] guarantees that every position in the ref-
erence sequence (human in this case) is in exactly one multiple alignment block,
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Simulation on Merge I
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Simulation on Merge II
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Simulation on Kou method
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Fig. 3. Simulations of three heuristic procedures together with plots of upper bounds,
with different values of K and P . The curves, top to bottom, refer to P=2,3,4,5.

and thus TBA is not able to capture all pairwise orthologous relationship in a
tandem gene cluster. For example, each human α gene is aligned to only one rat
α gene, despite the fact that a human α is actually orthologous to two more rat
α genes, and those alignments are lost. Our new aligner, called BOAST, which
implements Merge II, captures all pairwise orthologous relationship.

We aligned sequences containing the α-globin gene clusters from 20 mammals.
Each sequence is around200Kbases. Both TBAand BOAST utilize pairwise align-
ments computed by blastz [20]. For BOAST, the pairwise alignments are filtered by
a program called TOAST [11], which retains only the putatively orthologies (i.e.,
deletes paralogous matches). After computation of pairwise alignments, TBA pro-
duces 7.5 Mb of alignments after 170 CPU seconds, while BOAST produces 8.7 Mb
of alignments in around 112 CPU seconds.

Each aligner outputs a set of blocks, whose endpoints do not in general cor-
respond to gene or exon boundaries. Moreover, each functional globin gene has
three exons, and many alignments do not extend from one exon to the next.
We estimated how many cliques were formed for each type of genes as follows.
For a given gene sequence, we manually determined three positions distributed
roughly evenly throughout the gene, and counted the number of times each po-
sition appeared in the multi-alignment blocks; the maximum of the three counts
was used to estimate the number of times the gene copy appears in the blocks.
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In this example (α-globin clusters of 20 species), the clique sizes (i.e., the num-
ber of rows in a multi-alignment block) vary from 4 to 20, with most between
16 and 20. Alignment blocks containing θ-related genes have at most 17 rows
since three species do not have a θ-related gene. Other blocks with less than 20
rows result from a number of factors, including inconsistent pairwise alignments,
pseudogenes, or retention of a non-orthologous alignment. With many-to-many
orthologous relationships, there will be combinatorial increase on the number of
alignment blocks. Table 1 shows that utilizing Merge II, we reduce the number
of alignment blocks to 26 for ζ-related alignments and 58 for α-related align-
ment. It means that 26 and 58 multiple alignment blocks contain all pairwise
orthologous relationships of a certain region for ζ-related and α-related genes
respectively.

The BOAST alignments are reference-independent, which means that no se-
quence data from any of the species is missing from the alignment. One of our
tools extracts a reference-sequence-based alignment from the BOAST alignment
for any specified reference. This gives an alignment similar in size to the output
of a typical reference-based multiple aligners, for example multiz [2]. Moreover,
the BOAST alignments capture complete and accurate orthology information,
which is currently lost by other aligners.

Table 1. Number of copies for each type of α-globin genes of 20 mammals, and num-
ber of cliques formed for each type of genes in the multiple alignment employing the
heuristic Merge II. When the number of genes is given in the form x-y, x refers to
genes, and y refers to genes together with pseudogenes.
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4 Conclusion and Further Work

In gene clusters having a significant level of lineage-specific duplications (i.e., pro-
ducing many-to-many orthology relationships), it is not practical to enumerate
all possible multi-alignment blocks having pairwise orthologous rows. However,
we have shown here that it is still frequently feasible to produce a set of blocks
with the property that every pair of orthologs appears together in one of the
blocks. The essence of the situation is captured by the problem of finding a
minimum-cardinality clique cover. Both the problems of the finding the mini-
mum number of cliques to cover all edges and the minimum number of cliques
to cover all nodes (see below) are NP-complete. However, our simulations show
that sizes can in practice be reduced (especially by Merge I) to be close to the
upper bound. Though our alignment program has only incorporated Merge II,
it still dramatically reduces the alignment size, and makes it feasible to align
tandem gene clusters from many species. In the future, we hope to implement
Merge I in our alignment program.

Though the clique cover problem for an arbitrary graph is NP-complete, it is
open whether the problem’s restriction to alignment graphs is intractable. The
structure of the graphs is constrained by the phylogenetic tree for the species in
question and by properties of the orthology relationship [11], and these restriction
might be helpful for determining clique covers.

It also remains to investigate other criteria for aligning regions containing
duplicated segments or genes. For instance, one could loosen the requirement
that each orthologous pair of positions occur in two rows of the same block, and
ask only that a position of one species that has an ortholog in a second species
must appear in the same block as some (perhaps different orthologous) position
in that second species. In essence, this can be modeled as seeking the minimum
number of cliques to cover all nodes in the graph constructed above, which in
general requires fewer cliques than the problem studied here. We think that the
problem of aligning tandem gene clusters is sufficiently important that a variety
of approaches should be investigated.
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