
Alignments Without Low-Scoring Regions

Zheng Zhang∗ Piotr Berman∗ Webb Miller∗

February 10, 1998

Abstract

Given a strong match between regions of two sequences, how far

can the match be meaningfully extended if gaps are allowed in the

resulting alignment? The aim is to avoid searching beyond the point

that a useful extension of the alignment is likely to be found. With-

out loss of generality, we can restrict attention to the suffixes of the

sequences that follow the strong match, which leads to the following

formal problem. Given two sequences and a fixed X > 0, align initial

portions of the sequences subject to the constraint that no section of

the alignment scores below −X. Our results indicate that computing

an optimal alignment under this constraint is very expensive. How-

ever, less rigorous conditions on the alignment can be guaranteed by

quite efficient algorithms. One of these variants has been implemented

in a new release of the Blast suite of database search programs.

1 Introduction

It is widely appreciated that the dynamic programming algorithm for align-
ing two sequences (Needleman and Wunsch, 1970) can be viewed as com-
puting an optimal path in a certain graph (e.g., Myers and Miller, 1989).
For a simple example, assume that an alignment is awarded +1 whenever
identical letters are matched and is penalized –1 whenever either different
characters are matched or a character is matched with the gap symbol “–”.
Then the graph of Fig. 1 captures the problem of aligning sequences abc and
acbac.

For this simple class of alignment graphs, columns are numbered from
0 to M and rows are numbered 0 to N (top to bottom), where M and N

∗Department of Computer Science and Engineering, The Pennsylvania State University,

University Park, PA 16802.

1

Alignments Without Low-Scoring Regions 2

a c b a c

c

b

a

Figure 1: Graph model of a simple alignment problem. Dark edges (cor-
responding to aligning identical letters) score 1, and all other edges score
–1.

are the two sequence lengths. There is a one-to-one correspondence between
alignments of the two sequences and paths in the graph from (0, 0) (the upper
left corner) to (M,N) (the lower right corner) under which the alignment’s
score equals the sum of the edge costs along the path. In general, the node
at grid point (i, j) represents the problem of aligning the first i letters of the
first sequence and the first j letters of the second sequence.

Informally, the problem addressed by this paper is to align initial parts
of the two sequences by searching the upper left portion of the graph, leaving
the algorithm free to explore regions that look promising and to abandon the
search in regions that look fruitless. An alternative is to determine a priori
bounds on the region to be explored (e.g., see Chao et al., 1992, 1993) but
for certain applications we prefer an approach that automatically adapts to
the particular sequences being aligned.

Continuing informally, our strategy is to abandon the attempt to extend
a path if we discover a segment of the path where the sum of edge weights
falls below a fixed threshold, −X, where X > 0 is chosen in advance. Sev-
eral precise formulations of this approach are given in Sections 2-5, and
algorithms to compute optimal alignments are developed. Unfortunately,
these algorithms are not as efficient as one might like. On the other hand,
for somewhat looser requirements on the alignment, we present algorithms
that are quite efficient.

This paper reports results of a theoretical study that was conducted as
part of development of a new release (Altschul et al., 1997) of the Blast pro-
gram (Altschul et al., 1990). That study concluded that Algorithm XConsis-

Alignments Without Low-Scoring Regions 3

tentSet (see Section 7, below) should be used. An experimental evaluation of
that algorithm in its intended context of usage has previously been reported
(Altschul et al., 1997).

In 1989, as part of the original Blast development project, Gene Myers
designed and implemented an algorithm, different from Algorithm XCon-
sistentSet, that computes what is here called an X-consistent (but not X-
closed) set. (See the brief discussion on p. 405 of Altschul et al., 1990). On
the other hand, a number of papers discuss superficially similar alignment
algorithms that, in fact, solve a very different problem; those algorithms
search a much reduced region of the dynamic programming matrix in cases
where the two sequences are very similar, while ours gain efficiency when
the sequences are very different. See Spouge (1991), Chao et al. (1997), and
references cited therein.

An important problem not covered here is the statistical significance of
alignment scores under this model. A manuscript in preparation will address
that issue.

2 Formalization of the Problem

In practice, one uses a richer class of graphs than illustrated in Fig. 1. When
alignment scores are chosen so that two separate gaps are penalized more
than a single gap of the same total length (Gotoh, 1982), which is generally
necessary to get biologically meaningful alignments, then the graph that
models the alignment process is somewhat more complicated (Myers and
Miller, 1989). Indeed, several more general classes of graphs have proved
useful for biological sequence alignment (e.g., Chao et al., 1994; Altschul,
1997; Zhang et al., 1997). For instance, Fig. 2 depicts the structure of
graphs used for comparing a DNA sequence with a protein sequence (Zhang
et al., 1997), where each grid point (i, j) ∈ [0,M]× [0, N], has three vertices,
denoted C(i, j), D(i, j) and I(i, j).

By the time one considers these more complicated graphs and the full
range of orders in which they might reasonably be searched, it is conceptually
more satisfying and essentially no more difficult to couch the discussion in
a general graph framework. In this paper, we consider graphs that are

1. directed and acyclic,

2. the node set is of the form {0, 1, . . . , n}, where the node numbers
constitute the canonical topological numbering,

Alignments Without Low-Scoring Regions 4

i

i +1

j j +1 j +2 j +3 j +4

C D

I

C D

I

C D

I

C D

I

C D

I

C D

I

C D

I

C D

I

C D

I

C D

I

Figure 2: Edges leaving vertices at grid point (i, j) in a graph that models
alignment of a DNA sequence and a protein sequence. The graph is ob-
tained by modifying Fig. 6 of Zhang et al. (1997) as described in the third
paragraph of the “Implementation” section of that paper. The C node at
(i, j) represents all alignments of the prefix S[1..i] and the prefix T [1..j], for
sequences S and T ; the I node at (i, j) represents all alignments of S[1..i+1]
and T [1..i] ending with a vertical edge; the D node at (i, j) represents all
alignments of S[1..i] and T [1..j + 3] ending with a horizontal edge.

3. every node can be reached by a path from node 0,

4. the outdegree of a node (the number of edges leaving it) is bounded
by a constant, and

5. each edge e = p→ q has a real weight w(e) = w(p, q).

We also consider our algorithms for a more specific class of graphs, which
we call K-queueable, defined below, where K is an integer constant. (Later
we omit the explicit references to K.)

The canonical topological numbering allows us to define short and long
edges. (These notions are used solely to clarify the concept of K-queueable.)
An edge p → q is short if q ≤ p + K, and is long if for every other edge
p′ → q′, p′ ≤ p implies q > q′ −K. (The notion of a long edge may be more
intuitive if we define range(p) = max{q′| p′ → q′ and p′ ≤ p for some p′};
this way p → q implies that q is in the interval [p + 1, range(p)]. The edge
p→ q is short if it ends at one of the first K positions of this interval, and
long if it ends at one of the last K positions.) A K-queueable graph has
properties (1-5) and also satisfies

6. every edge is either short or long.

Note that the outdegree of a node of a K-queueable graph is at most 2K.

Alignments Without Low-Scoring Regions 5

For an example of a K-queueable graph, number the nodes in Fig. 2
row-by-row, left-to-right within a row, and in the order C, D, I at a grid
point. Thus the C node at grid point (i, j) has number 3(ik + j), where
there are k columns. With K = 13, there are 4 short edges and 5 long edges
depicted in Fig. 2, so the graph is 13-queueable.

The score s(π) of a path π is the sum of its edge weights. Fix X ≥ 0.
An X-path is a path that begins at 0 and has no segment of score strictly
below −X. It will be convenient to characterize the X-paths as follows. Let
smax(π) be the maximum score of a prefix of π, and let the terminal drop of
π be tdrop(π) = smax(π) − s(π). Then π is an X-path if it starts at 0 and
tdrop(π′) ≤ X for every prefix π′ of π. Q(X) is the set of all endpoints of
X-paths. For a set V of vertices, |V | is the cardinality of V .

3 Finding All Vertices on X-Paths

Now our goal is to find Q(X), the set of endpoints of X-paths. Assume the
convention that the minimum of the empty set is ∞. Then for

Y (p) = min{tdrop(π)| π is an X-path ending at p}

we have p ∈ Q iff Y (p) < ∞. Therefore it suffices to compute the value of
Y for every node. Our first algorithm is a straightforward application of the
following lemma, which introduces a useful “normalization” function.

Lemma 1 Define nmlX(x) to be 0 if x < 0, ∞ if x > X, and x otherwise.
Then

Y (q) =

{

0 if q = 0
min{nmlX(Y (p)− w(p, q))| p→ q} otherwise

Proof. By induction on q. If q = 0, the claim is obvious. Otherwise,

Y (q) = min{tdrop(π)| π is an X-path ending at q} =
minp→q min{tdrop(π)| π is an X-path ending at p→ q}.

Therefore it suffices to show that for every predecessor p of q

min{tdrop(π)| π is an X-path ending at p→ q} = nmlX(Y (p)− w(p, q)).

Alignments Without Low-Scoring Regions 6

Because we can apply the inductive hypothesis to p and nmlX(x− w(p, q))
is a nondecreasing function of x,

nmlX(Y (p)− w(p, q)) =
nmlX(min{tdrop(π)| π is an X-path ending at p} − w(p, q)) =
min{nmlX(tdrop(π)− w(p, q))| π is an X-path ending at p}.

Let π(q) be the extension of a path π ending at p by edge p→ q. To finish
the proof it suffices to show that for an X-path ending at p,
(a) π(q) is an X-path iff nmlX(tdrop(π)− w(p, q)) <∞, and
(b) if π(q) is an X-path, tdrop(π(q)) = nmlX(tdrop(π)− w(p, q)).

For (a), observe that π(q) is not an X-path iff tdrop(π′) > X for some
prefix π′ of π(q); because every proper prefix of π(q) is a prefix of the X-path
π, π(q) is not an X-path iff tdrop(π(q)) > X. Now it is easy to see that
π(q) is not an X-path iff tdrop(π) − w(p, q) > X, i.e. iff nmlX(tdrop(π) −
w(p, q)) =∞.

For (b), it is easy to see that if w(p, q) ≤ 0, then tdrop(π(q)) = tdrop(π)−
w(p, q) = nmlX(tdrop(π) − w(p, q)) (the last equality uses the assumption
that π(q) is an X-path). If 0 < w(p, q) ≤ tdrop(π), then smax(π(q))
= smax(π), and hence tdrop(π(q)) = smax(π(q)) − s(π(q)) = smax(π) −
s(π) − w(p, q) = tdrop(π) − w(p, q) = nmlX(tdrop(π) − w(p, q)) (the last
equality holds because the argument of nmlX is between 0 and X). If
w(p, q) ≥ tdrop(π), then tdrop(π(q)) = 0 = nmlX(tdrop(π)−w(p, q)), since
smax(π(q)) = s(π(q)). ⊓⊔

Assume q > 0. According to Lemma 1, to compute Y (q) it suffices to
initialize Y (q) ← ∞, compute Y (p) for every p < q, and for each p → q
execute

Y (q)← min(Y (q),nmlX(Y (p)− w(p, q))).

Obviously, the above statement does not have to be executed if Y (p) =∞,
therefore it will be more efficient to store in a queue those nodes p that have
Y (p) <∞ and execute this statement for the entries of the queue only. The
fact that the tentative value of Y (p) is ∞ can then be represented by the
fact that p was never inserted into the queue. In this manner the algorithm
shown in Fig. 3 correctly computes Y (q) for every node.

It is easy to see that the while-loop is executed exactly |Q(X)| times.
Because the nodes have bounded outdegree, the number of times the for-
loop is executed is O(|Q(X)|). Each execution of the while-loop involves
a delete-min. The operations inside one execution of the for-loop involve

Alignments Without Low-Scoring Regions 7

Q← an empty queue
Y (0)← 0, insert(0,Q)
while Q is not empty do

{ p←delete-min(Q)
/* delete-min according to the value of p,
i.e. its place in the canonical topological order */
for every q such that p→ q do

{ y ← nmlX(Y (p)− w(p, q))
if y <∞ then

if q 6∈ Q then

Y (q)← y, insert(q,Q)
else if y < Y (q) then

Y (q)← y
}

}

Figure 3: Algorithm XPathsEnds

simple arithmetic, insertion into the priority queue or an update of the Y -
attribute of an element of the queue. If we use the data structure of Johnson
(1982) we can perform these operations in the average time O(log logN).
If the graph is queueable, a simpler approach leads to a constant time: the
priority queue can be a simple doubly link list, in which the nodes are stored
according to their canonical topological order; then each insertion and each
update is performed within distance K from one of the list ends. This proves

Theorem 1 Q = Q(X) can be determined in O(min{N, |Q| log logN})
time, where there are N nodes. Moreover, if the graph is queueable, then Q
can be determined in O(|Q|) time.

4 Highest Scoring X-paths

The problem addressed in this section is how to find, for every vertex p ∈
Q(X), a highest scoring X-path that ends at p. As a result, we can find the
overall highest scoring X-path. The algorithm that we describe is a form
of dynamic programming, and its worst case running time is O(|Q(X)|2).
While it is too slow to be useful for searching biosequence databases, it

Alignments Without Low-Scoring Regions 8

might be useful in some other context. At the very least, before deciding
upon a fast heuristic that does not achieve this ideal, we should carefully
evaluate the cost of the exact algorithm.

To formulate a dynamic programming algorithm for our problem, we
introduce several definitions. Let end(π) be the endpoint of π. An X-path
π dominates another X-path ρ — denoted π ⊒ ρ — if end(π) = end(ρ),
tdrop(π) ≤ tdrop(ρ) and s(π) ≥ s(ρ). Clearly, we succeed in our goal if
for every X-path ρ we find an X-path π such that π ⊒ ρ. This in turn is
achieved by computing a set Π(X) with the following properties:

(i) for every X-path ρ there exists π ∈ Π(X) such that π ⊒ ρ;
(ii) no path in Π(X) dominates another;
(iii) every prefix of a path in Π(X) is also in Π(X).

Property (i) directly formulates our goal; later we will show that property (ii)
limits the size of Π(X) to |Q(X)|2, while property (iii) allows us to represent
each path in Π(X) by its endpoint and a pointer to its prefix containing all
other nodes. However, it is not a priori clear that a set of paths with
properties (i-iii) exists. We can show this fact by induction. Assume that
a set of paths Πp(X) satisfies properties (ii) and (iii), but instead of (i) it
satisfies

(i′) the penultimate node of every π ∈ Πp(X) belongs to {0, . . . , p};
(i′′) for every X-path ρ with penultimate node in {0, . . . , p} there exists

π ∈ Πp(X) such that π ⊒ ρ.

It is easy to see how to construct Π0(X): it consists of the zero-length path
from 0 to 0 and all one-edge paths starting at 0. To construct Πp(X), we can
start with Πp−1(X) and then perform a series of insertions. More precisely,
for every π ∈ Πp−1 that ends at p and for every q such that p→ q we extend
π with the edge p→ q and then test the resulting path π′. If it is dominated
by a path that is already in Πp, we discard π′, otherwise we insert π′ to Πp,
and remove the paths that π′ dominates.

Before we analyze the efficiency of this algorithm, we must prove its
correctness, i.e., that when it terminates, the set of paths Π stored in the
data structure of the algorithm equals (i.e., satisfies the conditions of) Π(X).
We use induction: assume that when we start the processing of node p,
Π = Πp−1(X); we need to show that at the end of this processing Π satisfies
the properties of Πp(X). Property (i′) is assured because Πp−1(X) satisfies

Alignments Without Low-Scoring Regions 9

it and we do not insert paths that could violate it. Property (ii) is assured
because we insert a new path only if it is not dominated by a path that
is already in Π, and after such an insertion we remove all the paths that
the new path dominates. Property (iii) could get violated in two ways: by
insertion of a path that does not have all its prefixes in Π—and our method
excludes such a possibility—and by deleting from Π a prefix of another
path from Π. The latter is impossible as well, because if we remove in this
stage a path ρ that is a proper prefix of σ, then end(ρ) > p, and thus the
penultimate node of σ is larger than p; by (i′) σ 6∈ Π. Thus it remains to
show that Π will satisfy (i′′).

That means that for every path τ for which p is a penultimate node,
Π will contain a path ψ such that ψ ⊒ τ . We can rewrite τ as ρσ, where
end(ρ) = p and σ is the one-edge ending of τ . Because the penultimate node
of ρ is in {0, . . . , p − 1}, the previously constructed set Πp−1(X) contains
a path π such that π ⊒ ρ. While processing p, we construct πσ, and the
latter remains in our set of paths unless we have another path ψ such that
ψ ⊒ πσ. Thus we have the chain

ψ ⊒ πσ ⊒ ρσ = τ.

While the second step in this chain is not obvious, it follows directly from
the lemma below.

Lemma 2 If π and ρσ are two X-paths and π ⊒ ρ, then πσ is also an
X-path and πσ ⊒ ρσ.

Proof. First note that πσ is indeed a path, because π ⊒ ρ implies that π and
ρ have the same endpoint, which in turn is the starting point of σ. Next, we
can show, by contradiction, that πσ is an X-path. Suppose not; then it has
a fragment with a score below −X. This fragment can be included neither
in π, nor in σ, so it must be a concatenation of a suffix of π with a prefix of
σ. Obviously, it suffices to choose a suffix of π with the minimal score, i.e.,
by definition, a score equal to −tdrop(π). We can replace this suffix with
a suffix of ρ having score −tdrop(ρ), and because tdrop(π) ≤ tdrop(ρ), the
result scores below −X. This is a contradiction, because that latter path is
a fragment of ρσ, which in turn is an X-path.

The same argument—replacing a suffix of π with a suffix of ρ—shows
that tdrop(πσ) ≤ tdrop(ρσ). Finally, s(πσ) = s(π) + s(σ) ≥ s(ρ) + s(σ) =
s(ρσ). ⊓⊔

Alignments Without Low-Scoring Regions 10

The above lemma concluded the correctness proof of our algorithm. By
the definition, one path dominates another only if both have the same end-
point. Therefore our algorithm can be altered as follows: when we process p,
we insert extensions of paths that end at p without testing (as long as they
are X-paths); instead, when we start the processing of a node p, we “purge”
the set of paths that end at p, so at the end none dominates another. For
example, we can sort these paths so that the scores are non-increasing; then
in a group of paths with the same score we keep exactly one—with the mini-
mum terminal drop (now the scores are decreasing); lastly we make a sweep
through the list of paths and delete every one that does not have the ter-
minal drop smaller than the one of the predecessor. Algorithm OptXPaths,
shown in Fig. 4, follows this description.

Now we need to analyze the efficiency of Algorithm OptXPaths. We
split this task into two parts. First, we will show that properties (i-iii) imply
|Π(X)| ≤ |Q(X)|2, while later we will argue that this algorithm performs
only a constant number of steps for each element of Π(X). First we need
two additional lemmas.

Lemma 3 Let top(π) be end(π′), where π′ is the longest prefix of π with the
maximum score. Then for every π, ρ ∈ Π(X) the equality top(π) = top(ρ)
implies smax(π) = smax(ρ).

Proof. Let π′ and ρ′ be the prefixes of π and ρ such that end(π′) = top(π)
and end(ρ′) = top(ρ). Because of (iii), both π′ and ρ′ belong to Π(X).
Clearly, s(π′) = smax(π

′), hence tdrop(π′) = 0, and similarly tdrop(ρ′) = 0.
By our assumption, end(π′) = end(ρ′). Therefore either π′ ⊒ ρ′ (if s(π′) ≥
s(ρ′)) or ρ′ ⊒ π′ (otherwise). By property (ii) of Π(X), π′ = ρ′, which
implies smax(π) = s(π′) = s(ρ′) = smax(ρ). ⊓⊔

Lemma 4 Assume that π, ρ ∈ Π(X), π 6= ρ and end(π) = end(ρ). Then
(a) tdrop(π) ≤ tdrop(ρ) implies s(π) < s(ρ);
(b) smax(π) ≤ smax(ρ) implies tdrop(π) < tdrop(ρ).

Proof. By contradiction. If (a) does not hold, then s(π) ≥ s(ρ) and
tdrop(π) ≤ tdrop(ρ), hence π ⊒ ρ, which contradicts property (ii) of Π(X).
If (b) does not hold, then tdrop(π) ≥ tdrop(ρ), which further implies s(π) =
smax(π)− tdrop(π) ≤ smax(ρ)− tdrop(ρ) = s(ρ); hence ρ ⊒ π, which yields
an identical contradiction. ⊓⊔

Alignments Without Low-Scoring Regions 11

A corollary of the previous two lemmas is that a path π ∈ Π(X) is
uniquely determined by the pair (end(π), top(π)). By Lemma 3 top(π) de-
termines smax(π), and given that we know end(π), Lemma 4 shows that we
may determine tdrop(π) and s(π). Note that no two different paths of Π(X)
may have the same end, score and terminal drop.

Also note that for any X-path π, both end(π) and top(π) belong to
Q(X). Thus the corollary shows that |Π(X)| < |Q(X)|2. Moreover, we can
represent π ∈ Π(X) by a tuple

a = (a.end , a.top, a.s, a.smax, a.pred) ,
where the first four items are self-explanatory, while a.pred is (the identifier
of) the tuple representing π′, a prefix of π that contains all its nodes except
the last one; item pred allows one to traverse from a to the initial tuple
(0, 0, 0, 0, NULL) and, in the process, read all the vertices of π. In our
algorithm, all tuples with the same value of end will form a linked list.

Such a representation of Π(X) can be computed in a similar manner
to Q(X) in Algorithm XPathsEnds. In particular, we again use a queue
of vertices, Q, and we process vertices in the same order. Each vertex in
the queue is in Q(X) and has a list of tuples that represent paths ending
at this vertex; these paths are obtained by extending the paths to the ver-
tices already processed—and consequently, the already verified elements of
Π(X)—by a single edge.

The queue is easy to initialize: we insert vertex 0 to Q and we give it
the one element list consisting of the tuple (0, 0, 0, 0, NULL).

When a vertex is extracted by delete-min, we first sort its list of tu-
ples so that smax is non-decreasing. Then we scan this list and “purge”,
so it becomes increasing with respect to s and tdrop; as a result no path
represented by a remaining tuple dominates another, and every path that
was “purged” is dominated by one of the remaining ones. Subsequently, we
generate all possible extensions of the paths on the list by one edge using
procedure extend, which is presented together with the complete algorithm
in Fig. 4. Note that this algorithm is very similar to the previous one.

Once Algorithm OptXPaths finishes the processing of vertex p, its list
of tuples must contain a representation of an X-path that reaches p with
the minimum terminal drop; thus exactly the same vertices are processed by
Algorithm OptXPaths as by XPathsEnds, and in the same order. Therefore
each line in the while-loop of Algorithm OptXPaths is executed O(|Q(X)|)
times. As we concluded from Lemma 3 and Lemma 4, after sorting and
purging, the list of p has size at most p+1 ≤ |Q(X)|. Therefore the running
time of each call of extend is O(|Q(X)|). Moreover, because the lists of

Alignments Without Low-Scoring Regions 12

extend(p, q)
for every tuple a on the list of p do

{ y ← nmlX(a.tdrop − w(p, q))
if y <∞ then

{ if q 6∈ Q then insert(q,Q)
if y = 0 then t← q else t← a.top
append the list of q with (q, t, a.s+ w(p, q), y, a)

}
}

main()
Q← an empty queue
Y (0)← 0, insert(0,Q)
create the list of 0 consisting of the tuple (0, 0, 0, 0, NULL)
while Q is not empty do

{ p←delete-min(Q)
sort the list of p
purge this list so it is increasing in respect to s and tdrop
for every q such that p→ q do

extend(p, q)
}

Figure 4: Algorithm OptXPaths

Alignments Without Low-Scoring Regions 13

vertices are created by calls to extend, the sum of their sizes before sorting
and purging is O(|Q(X)|2). Thus to show that Algorithm OptXPaths runs
in time O(|Q(X)|2) it suffices that we can sort such a list in time proportional
to its size or to |Q(X)|.

One can observe that the graphs generated by the alignment problems
have not only bounded outdegree, but bounded indegree as well. Moreover,
one can observe that a call of extend(p, q) appends the list of q with tuples
that have nondecreasing tdrop’s, thus the sorting requires us to merge a
bounded number of sorted lists, and that can be done in time proportional
to the size of the whole list.

If we allow the indegree to be unbounded, we could still sort this list
more efficiently than in the general case using bucket sort. We can find
the set of possible values of top—the vertices reachable with tdrop = 0—
using Algorithm XPathsEnds. Then these vertices (the t’s) can be sorted
according to s entries from the tuples of the form (t, t, s, s, p). A hash
table can allow us to retrieve quickly the rank of a t in this order. This
precomputation allows us to bucket sort the “raw” list of a node q according
to the rank of top’s. This clearly takes time proportional to the size of a list
plus |Q(X)|. Note that we do not need to store multiple entries in a bucket:
instead of inserting the second entry, we can keep the dominating one of the
two.

We can summarize our conclusions as follows:

Theorem 2 A set Π(X) that contains a highest scoring X-path for each
element of Q(X) can be computed in time O(|Q(X)|2).

There exists an important special case where we can improve this bound.
Assume that w(p, q) is an integer function, and that X is small. Then a
list of a vertex, after sorting and purging, has at most X + 1 elements,
corresponding to X-paths that end at this vertex while having the terminal
drop of 0, 1, ..., X. Moreover, we can bucket sort the lists according to
tdrop. The same argument as before yields

Theorem 3 Assume that the edge weights are integer. Then a set Π(X)
that contains a highest scoring X-path for each element of Q(X) can be
computed in time O(X|Q(X)|).

Alignments Without Low-Scoring Regions 14

5 X-Paths that are Optimal Paths

The goal of this section is to find P (X), which is the set of all vertices one
of whose optimal (highest score) paths is an X-path, and to determine that
highest score for each vertex in P (X).

Before we present an algorithm for this problem, let us consider how
fast it can possibly be. Definitely, we need to consider all the vertices of
P = P (X). Then, given an edge p → q where p ∈ P (X), and hence we
know that some optimal path from 0 to p is also an X-path, we need to
check whether one such path can be extended to q. Therefore we need to
consider all the vertices in

P = {q| p→ q for some p ∈ P}

(note that P − {0} ⊂ P). Finally, when we extend some path to a new
vertex q, we need to verify that it is indeed an optimal path from 0 to q; to
do this we need to consider all vertices that can conceivably be located on
such a path, i.e. all the vertices of:

V = {p| there exists a path containing p from 0 to some q ∈ P}

Theorem 4 P (X) can be determined in time O(|V |).

Proof. We describe an algorithm that uses two data structures: a queue Q

that stores the vertices that we wish to process, and the set S of nodes that
have been processed. For each node p ∈ S we store a record with two fields:

Y (p) = min{tdrop(π)| π is an optimal path to p and an X-path}

score(p) = max{s(π)| π is a path from 0 to p}

Note that, analogous to the definition of Y (p) in Section 3, p ∈ P iff Y (p) <
∞.

The algorithm shown in Fig. 5 uses a subroutine to processes vertex q,
i.e. to compute Y (q) and score(q), and if, Y (q) < ∞, to assure that the
successors of q will be processed later (by inserting them into Q).

The proof of correctness of this algorithm consists of two parts: first we
need to show that for every element of q ∈ S, the fields Y (q) and score(q)
are computed according to the definition, and next we need to show that
eventually S will contain all the nodes that need to be considered. If both
statements are true,

P = {q ∈ S| Y (q) <∞}.

Alignments Without Low-Scoring Regions 15

process(q)
if q 6∈ S then

{ score(q)← Y (q)← −∞
insert(q,S)
for every p such that p→ q do

{ process(p)
s← score(p) + w(p, q)
y ← nmlX(Y (p)− w(p, q))
if s > score(q) then

score(q)← s, Y (q)← y
else if s = score(q) and y < Y (p) then

Y (q)← y
}
if Y (q) <∞ then

for every r such that q → r do

enqueue(r,Q)
}

main()
Q← an empty queue
Y (0)← score(0)← 0
insert(0,Q)
while Q is not empty do

process(dequeue(Q))

Figure 5: Algorithm SymOptPaths

Alignments Without Low-Scoring Regions 16

The former statement can be proved using induction, just as used in Sec-
tion 3 for the function Y (p). The latter follows directly from the way we
enqueue at the end of process(q).

The analysis of the running time is also simple; it is clear that only the
vertices of V are considered. While a particular vertex p can be considered
many times, the total number of such actions is O(|V |). In particular, a
vertex can be considered either because it has been enqueued by one of its
predecessors or because it is being checked by one of its successors. When q
enqueues r, we charge it to the edge q → r, and when q checks p, we charge
it to p→ q; an edge is charged at most twice and only edges with beginnings
in V are charged. Because we assume that the outdegree of vertices is O(1),
the total number of charges is O(|V |).

It is easy to see that to each time we consider a vertex we can attribute
execution of a finite number of lines, so that each execution of a line is
attributed somewhere. Thus to prove our promised running time it suffices
to show that each line is executed in constant time. The only line for which
this statement is nontrivial is

if q 6∈ S then

which checks the membership of q in S and retrieves the record of q if one
exists (so that the subsequent lines can be executed). We may implement S

using a hash table. The only operations we need are insertion, membership
test and retrieval. One possible implementation would use a hash table with
chaining starting with a table that has one chain only. Once the average
chain length rises above a certain constant, we can double the table size,
concatenate all the chains, initialize the chains in the table to empty and
reinsert all the records using a new hash function. It is easy to see that the
number of operations used by that schema is on average O(|V |). ⊓⊔

6 Computation of an X-Closed Set

Intuitively, our goal is to find “the most meaningful” similarities between
two given sequences, where “similarity” corresponds to a high-scoring path.
In effect, our working hypothesis is that paths with X-drops are not mean-
ingful; one approach to a high-scoring path with an X-drop is to remove the
offending path fragment, giving two paths whose total score exceeds that of
the original path by at least X.

We have seen that a highest scoring X-path can be computed. How-

Alignments Without Low-Scoring Regions 17

ever, the procedure we presented is quite expensive to run and one can be
pessimistic whether anything better than a dynamic programming method
can be found. An alternative approach is to disregard an alignment corre-
sponding to an X-path whenever there is a higher scoring alignment of the
same two sequences, and the previous section’s algorithm to compute P (X)
appeared very efficient. However, it may happen that the set V that deter-
mines the running time is much larger than the set P (X) being computed.
The flaw in the definition of P (X) is that we need to consider meaningless
paths (with X-drops) to disqualify the meaningful ones (as having lower
score), and this can consume the bulk of our effort. Below we describe a
property of vertex sets that allows us to spend constant time per vertex and
to consider only meaningful paths.

Vertex set D is called X-consistent if for every p ∈ D there is an X-path
π to p that is highest scoring over all paths from 0 to p that stay in D. An
X-consistent set D is X-closed if for every vertex p, if D∪{p} is X-consistent
then p ∈ D. Note that if D is X-consistent then D ⊆ Q(X), and if D is
X-closed then P (X) ⊆ D.

We introduce notation that allows us to define X-consistent (and X-
closed) sets inductively, and, eventually, algorithmically. Given a set D, we
can define the following functions for the elements of D:

PathD(p) = {π| path π starts at 0, ends at p and all
vertices of π, with a possible exception
of p, belong to D }

scoreD(p) = max{s(π)| π ∈ PathD(p)}
HPathD(p) = {π ∈ PathD(p)| s(π) = scoreD(p)}
YD(p) = min{tdrop(π)| π is an X-path and π ∈ HPathD(p)}

It follows directly from the above definitions that a set of vertices D is X-
consistent iff YD(p) < ∞ for every p ∈ D. Such a set is also X-closed if
YD(p) =∞ for every p ∈ D−D. The following lemma shows how to define
the functions scoreD and YD inductively.

Lemma 5 The functions scoreD and YD satisfy the following recurrence:
scoreD(0) = YD(0) = 0, and for q > 0
scoreD(q) = max{scoreD(p) + w(p, q)| p→ q and p ∈ D}
YD(q) = min{nmlX(YD(p) − w(p, q))| p → q, p ∈ D and scoreD(p) +
w(p, q) = scoreD(q)}

Alignments Without Low-Scoring Regions 18

Proof.. By induction on q. For q = 0 the claim is obvious (even if 0 6∈ D,
in which case the path from 0 to 0 is still in PathD(0)). The inductive step
follows from the fact that every path in π ∈ HPathD(q) must end with an
edge, say p → q; in this case the path π′ obtained by removing this edge
belongs to HPathD(p). By induction, scoreD(p) = s(π′), hence scoreD(q)
= scoreD(p) +w(p, q), and consequently the recursive formula cannot yield
a result that is lower than the correct one. Moreover, if π is an X-path, so is
π′; if π is an X-path from HPathD(q) that has the minimum terminal drop,
then π′ is also an X-path; by our inductive assumption YD(p) ≤ tdrop(π′)
and the result of our recursive formula for YD(q) is at most nmlX(YD(p)−
w(p, q)) ≤ tdrop(π). It is equally easy to see that the recursive formula
cannot lead to an overly high value of scoreD(q) or an overly low value of
YD(q). ⊓⊔

The above recurrences give a method for finding an X-closed set R.
We initialize R with {0} and consider every vertex q (from 1 to n) as a
candidate for the membership in R. Because when we consider q we already
know R ∩ {0, . . . , q − 1}, we can compute scoreR(q) and YR(q) using the
recurrence; we insert q into R iff YR(q) < ∞. Clearly, set R computed in
this manner is X-closed.

Actually, we can characterize the outcome of this method more precisely.
Order vertex sets according to the lexicographic order of their membership
vectors, more formally

A ≻ B iff min(A⊕B) ∈ A;
where A ⊕ B is the symmetric difference of A and B. One can show that
R is the maximum X-closed set in terms of this order. Suppose that D
is X-closed, D 6= R and q = min(R ⊕ D). Then D ∩ {0, . . . , q − 1} =
R ∩ {0, . . . , q − 1} and therefore YD(q) = YR(q) (= x). If x = ∞, then q
can belong neither to D nor to R, a contradiction. If X < ∞, then our
algorithm places q in R.

Theorem 5 The X-closed set R that is maximal in the ordering ≻ can
be computed in time O(|R| log logN), and in time O(|R|) if the graph is
queueable.

Proof. The algorithm shown in Fig. 6 computes the set R in the same
sense that Algorithm XPathsEnds computes Q(X): vertex p is an element
of R if it is removed from the queue Q with a finite value of Y (p). In a
sense, Algorithm XClosedSet is a hybrid of Algorithms XPathsEnds and

Alignments Without Low-Scoring Regions 19

Q← an empty queue
score(0)← Y (0)← 0, insert(0,Q)
while Q is not empty do

{ p←delete-min(Q)
if Y (p) <∞ then

for every q such that p→ q do

{ y ← nmlX(Y (p)− w(p, q))
s← score(p) + w(p, q)
if q 6∈ Q then

{ Y (q)← y, score(q)← s, pred(q)← p
insert(q,Q)

}
else if s > score(q) then

Y (q)← y, score(q)← s, pred(q)← p
else if s = score(q) and y < Y (q) then

Y (q)← y, pred(q)← p
}

}

Figure 6: Algorithm XClosedSet

SymOptPaths. Its similarity with XPathsEnds is so extensive that we can
copy the proof of the running time from Theorem 1.

Therefore it remains to argue that XClosedSet computes score(q) and
Y (q) exactly as the method discussed above. Indeed, the first difference is
that above we computed score(q) as the maximum, over p such that p ∈ R
and p→ q, of score(p)+w(p, q), while the Algorithm XClosedPaths updates
Y (q) whenever it inserts such a p into R (by dequeueing p with finite Y (p));
clearly the outcome is the same. The difference in the computation of Y (q)
is of the same nature. A minor complication is that we are computing a con-
ditional minimum; every time we increase our estimate of the final score(q),
we restart the computation of the minimum (as the values considered before
were found invalid). ⊓⊔

The fact that R is the maximum X-closed set in ordering ≻ does not
depend on the choice of the canonical topological ordering, because both YD

Alignments Without Low-Scoring Regions 20

0

1 3

4 52

-3

-2

-4

10

4 10

Figure 7: Graph used to illustrate R(X)

and scoreD are defined in terms of graph predecessors, which in turn must
preceed a given vertex in every topological order. This shows that while
the execution of Algorithm XClosedSet depends on the choice of a canonical
topological order, the resulting set R does not.

Because set R depends solely on the value of X, it should be denoted
R(X). One may think that the fact that the X-closed set is the highest in ≻
ordering is positive, but it may actually be detrimental to our chief goal, that
is finding an X-path that scores as high as possible given that we have only
limited computational resources. For example, admitting a vertex “early”
may prevent us from finding some superior X-path later. This phenomenon
is illustrated in Fig. 7, where R(2) contains an X-path of score 12, while
R(3), which includes vertex 1, finds a best path of score 7.

7 Faster Computation of an X-Consistent Set

Although Algorithm XClosedSet does attain the goals of producing a high-
scoring X-path and spending only O(1) time per investigated node, it is
worthwhile to search for an even faster algorithm. In particular, Algorithm
XClosedSet spends approximately half of its time manipulating Y -values,
and efficiency can be gained if one is willing to accept upper bounds on
paths’ terminal drops in place of their exact values. Doing so permits more
nodes to be investigated (by raising X) in a given running time, which
sometimes finds a higher scoring path.

Algorithm XConsistentSet proceeds similarly to XClosedSet, but with-
out computing Y values. Because our implicit convention for the output set
refers to these values, XConsistentSet computes the output set R′ explicitly.
When a node p is removed from the queue Q, we know a highest scoring
path π that goes from 0 to p through R′, and the score of π, score(p). If we

Alignments Without Low-Scoring Regions 21

know that π is an X-path, we can insert p into R′ and R′ remains consistent.
As in the case of XClosedSet, it suffices to verify that the terminal drop of
π is at most X; this is true because every proper prefix of π was already
verified.

Recall that the terminal drop of π equals s(π)−smax(π), thus to provide
an upper bound for this value, we can substitute smax(π) with an upper
bound. There are two cases. In the first, smax(π) = s(π); then even if our
“upper bound” on smax(π) is too low, we do insert p to R′ properly, because
the terminal drop of π is zero. In the second, smax(π) is a score of a proper
prefix of π, and consequently of an X-path that was computed (and verified)
already. Then we can upper bound smax(π) with the highest score for all
such paths; the value of this highest score is stored in variable max score.
The remaining details are contained in Figure 7. Using the same reasoning
as in the previous section we can conclude:

Theorem 6 Algorithm XConsistentSet computes an X-consistent set R′ =
R′(X) in time O(|R′| log logN), and in time O(|R′|) if the graph is queue-
able.

The set R′(X) computed by Algorithm XConsistentSet is X-consistent
but not necessarily X-closed. Somewhat surprisingly, R′(X) is not always
a subset of the set R(X) computed by Algorithm XClosedSet, as shown by
the example in Fig. 9. There, R(2) = {0, 1, 2, 3} and Algorithm XClosedSet
computes a best X-path of score 8 (ending at node 3), whereas R′(2) =
{0, 1, 4, 5} and Algorithm XConsistentSet computes an X-path of score 13
(ending at node 5). Note that P (2) = {0, 1, 2, 3}, illustrating that R′(X)
need not contain P (X).

8 Finding Better X-Paths

So far, we have focused on efficient ways of finding “good”X-paths. Because
we apply the concept of X-path in database searches, the speed of the al-
gorithm was of paramount importance. However, as the cost of CPU cycles
keeps decreasing, it is also worthwhile to consider a way of improving the
accuracy of the algorithm if we can increase the running time by a constant
factor.

The approaches discussed so far fall into two classes. The fast algorithms
are finding X-consistent sets; for each vertex in such a set the algorithm
computes the best score of a path that traverses from 0 to that vertex

Alignments Without Low-Scoring Regions 22

Q← an empty queue, R′ ← ∅
max score← score(0)← 0, insert(0,Q)
while Q is not empty do

{ p←delete-min(Q)
if max score− score(p) ≤ X then

{ insert(p,R′)
max score← max(max score, score(p))
for every q such that p→ q do

{ s← score(p) + w(p, q)
if q 6∈ Q then

score(q)← s, pred(q)← p, insert(q,Q)
else if s > score(q) then

score(q)← s, pred(q)← p
}

}
}

Figure 8: Algorithm XConsistentSet

0 1

4 52 3

1

10 -3 10

2
-2

Figure 9: Graph used to illustrate the faster heuristic.

Alignments Without Low-Scoring Regions 23

through this set, and the (estimate of) corresponding terminal drop. X-
consistency assures that this path is an X-path.

The exact algorithm, OptXPaths, computes for each vertex of Q(X) a
set of X-paths that dominates all X-paths with this endpoint. Effectively,
OptXPaths computes the table of the tradeoff between the score and the
terminal drop. One can look at this process as follows. OptXPaths ex-
pands the original graph by replicating its vertices; a replica of a vertex
p corresponds to a particular terminal drop value. However, the vertices
corresponding to the terminal drop values of X or more are pruned. (The
replicated vertices are the tuples formed by OptXPaths.) The set Q(X),
expanded in this manner, becomes X-consistent.

The idea of the intermediate algorithm is to expand the graph by repli-
cating each vertex into k+1 many vertices (where k is an arbitrary constant),
where each replica corresponds to a probabilistic approximation of the ter-
minal drop. Within this graph we seek an X-closed subset of vertices using
the same method as in Algorithm XClosedSet.

To make the formulation of the algorithm simpler, we multiply all edge
weights by k/X, so that X-paths becomes k-paths. A replica of vertex p has
the form of (p, i), i ∈ {0, . . . , k}. When we process a vertex (p, i) we consider
every q such that p → q; in the expanded graph the corresponding edge is
(p, i)→ (q, j) where j is selected at random by function nextlevel. The new
algorithm, shown in Fig. 10, parallels closely Algorithm XClosedSet. It is
easy to see that Algorithm ApproxOptXPaths computes (implicitly) a set
of X-paths. Intuitively, it should yield more X-paths than XClosedSet, but
it is also possible that the converse is true in a specially constructed graph.
Nevertheless, in our tests this algorithm frequently found more X-paths and
higher scores than did XClosedSet.

9 Acknowledgements

We thank David Lipman for initiating this project and for his help and
encouragement along the way. This work was supported by grant LM05110
from the National Library of Medicine.

10 References

Altschul, S. 1997. Generalized affine gap costs for protein sequence alignment.
To appear in Proteins.

Alignments Without Low-Scoring Regions 24

nextlevel(i, v)
if i = k or i+ v ≥ k then

return k
else if i+ v ≤ 0 then

return 0
else

{ let j be an integer and 0 ≤ x < 1 such that i+ v = j + x
with probability x add 1 to j
return j

}
main()

Q← an empty queue
score(0, 0)← Y (0, 0)← 0, insert((0, 0),Q)
while Q is not empty do

{ (p, i)←delete-min(Q)
if Y (p, i) <∞ then

for every q such that p→ q do

{ y ← nmlX(Y (p, i)− w(p, q))
s← score(p, i) + w(p, q)
j ← nextlevel(i, w(p, q))
if (q, j) 6∈ Q then

{ Y (q, j)← y, score(q, j)← s, pred(q, j)← (p, i)
insert((q, i),Q)

}
else if s > score(q, j) then

Y (q, j)← y, score(q, j)← s, pred(q, j)← (p, i)
else if s = score(q, j) and y < Y (q, j) then

Y (q, j)← y, pred(q, j)← (p, i)
}

}

Figure 10: Algorithm ApproxOptXPaths

Alignments Without Low-Scoring Regions 25

Altschul, S., Gish, W., Miller, W., Myers, E., and Lipman, D. 1990. A basic
local alignment search tool. J. Mol. Biol. 215, 403–410.

Altschul, S., Madden, T., Schäffer, A., Zhang, J., Zhang, Z., Miller, W., and
Lipman, D. 1997. Gapped BLAST and PSI-BLAST – a new generation of
protein database search programs. Nucleic Acids Research 25, 3389–3402

Chao, K.-M., Pearson, W., and Miller, W. 1992. Aligning two sequences within
a specified diagonal band. CABIOS 8, 481–487.

Chao, K.-M., Hardison, R.C., and Miller, W. 1993. Constrained sequence
alignment. Bull. Math. Biol. 55, 503–524.

Chao, K.-M., Hardison, R.C., and Miller, W. 1994. Recent developments in
linear-space alignment methods: a survey. J. Comput. Biol. 1, 271–291.

Chao, K.-M., Zhang, J., Ostell, J. and Miller, W. 1997. A tool for aligning very
similar DNA sequences. CABIOS 13, 75–80.

Gotoh, O. 1982. An improved algorithm for matching biological sequences. J.
Mol. Biol. 162, 705–708.

Johnson, D. 1982. A priority queue in which initialization and queue operations
take O(log logD) time. Math. Systems Theory 15, 295–309.

Needleman, S.B., and Wunsch, C.D. 1970. A general method applicable to the
search for similarities in the amino acid sequences of two proteins. J. Mol.
Biol. 48, 443–453.

Myers, E., and Miller, W. 1989. Approximate matching of regular expressions.
Bull. Math. Biol. 51, 5–37.

Spouge, J.L. 1991. Fast optimal alignment. CABIOS 7, 1–7.
Zhang, Z., Pearson, W., and Miller, W. 1997. Aligning a DNA sequence with

a protein sequence. J. Comput. Biol. 4, 339–349.

