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Abstract. Accurately reconstructing the large-scale gene order in an
ancestral genome is a critical step to better understand genome evolu-
tion. In this paper, we propose a heuristic algorithm for reconstructing
ancestral genomic orders with duplications. The method starts from the
order of genes in modern genomes and predicts predecessor and succes-
sor relationships in the ancestor. Then a greedy algorithm is used to
reconstruct the ancestral orders by connecting genes into contiguous re-
gions based on predicted adjacencies. Computer simulation was used to
validate the algorithm. We also applied the method to reconstruct the
ancestral genomes of ciliate Paramecium tetraurelia.

Keywords: gene order reconstruction, duplication, contiguous ancestral
region.

1 Introduction

The increasing number of genome sequences becoming available makes it feasi-
ble to computationally reconstruct ancient genomes of related species that have
undergone genome rearrangements. The heart of this problem is to “undo” these
large scale rearrangements and restore the ancestral gene order. Previous stud-
ies mainly focused on solving the median problem, which is either based on
reversal (inversion) distance or breakpoint distance. In this problem one tries
to reconstruct the common ancestor of two descendant genomes using one addi-
tional outgroup genome. Unfortunately, the median problem doesn’t have exact
and efficient algorithms [1,2]. In the past, heuristic programs for both break-
point median problem and reversal median problem have been proposed [3,4,5].
But the discrepancy between the computational prediction and the result from
cytogenetic experiments [6,7] suggests a need to explore further computational
methods for ancestral genome reconstruction.

In our recent work [8], we proposed a new approach for reconstructing the an-
cestral order based on the adjacencies of orthologous genomic content in modern
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species, which essentially avoids solving any rearrangement median problem. The
critical procedure of the method is analogous to Fitch’s parsimony algorithm [9].
Instead of inferring ancestral nucleotides, we infer the locally parsimonious pre-
decessor and successor relationships of the orthologous conserved segments in
the ancestor, in this case the ancestor of most placental mammals, known as the
Boreoeutherian ancestor. Another procedure then connects these segments into
29 contiguous ancestral regions (CARs). Our result agrees with the cytogenetic
prediction fairly well [10].

However, the main drawback of the method in [8] is that it doesn’t handle
duplications. Indeed, duplications (including segmental duplications and tandem
duplications) have a great impact on genome evolution [11]. Some previous the-
oretic studies [12,13,14] have included duplications (sometimes with loss) along
with rearrangements. In this paper, we extend the method in [8] and propose
an efficient heuristic approach to incorporate duplications into analysis when we
are inferring ancestral gene orders.

2 Methods

2.1 Definitions

In this paper, we use the term gene to represent an atomic evolutionary unit that
has never been broken due to breakpoints caused by any operations (duplication
or rearrangement). If two genes are derived from a common ancestral gene, then
they belong to the same gene family. We use g[x] to represent the gene x in
genome g. Also, if two genes from the same family x are in the same genome
g, then we denote these genes as g[x.i] and g[x.j] (i �= j). A chromosome of
a modern or ancestral genome consists of a list of genes where each gene has
a sign (orientation) that is either positive (+) or negative (−). The reverse
complement of a chromosome is obtained by reversing the list and flipping the
sign of each gene. A genome is a set of chromosomes.

If genome g contains gene x, then the predecessor pg(x) is defined as the
gene that immediately precedes x on the same chromosome. Predecessor has a
sign. In the opposite orientation, pg(−x) immediately precedes −x in the reverse
complement of the same chromosome. We set pg(x) = ΦA if x appears first on
a chromosome. The successor sg(x) of x is defined analogously. And we also
set sg(x) = ΦZ if x appears last on a chromosome. For instance, let g have the
chromosome (1 −4.1 −3 4.2 5 2). Then pg(1) = ΦA, pg(2) = 5, pg(−3) = −4.1,
sg(−4.1) = −3, pg(−1) = 4.1, sg(−5) = −4.2, etc.

In addition to speciation events, the original ancestral genes evolve through
large-scale evolutionary operations which include insertion/deletion, rearrange-
ments (inversion, translocation, fusion/fission), and tandem and segmental du-
plications. Consequently, we have a different number of genes and different gene
orders in present day genomes. Our goal is to reconstruct the order and ori-
entation of genes in the target ancestral genome. We call each reconstructed
chromosome a contiguous ancestral region (CAR).
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2.2 Species Tree, Gene Tree, and Reconciled Tree

A species tree is a full binary tree describing the phylogeny among differ-
ent species (Fig.1(A)). All the bifurcating ancestral nodes represent speciation
events, while leaves correspond to modern species. Each branch in the tree has
branch length d indicating the evolutionary distance. Along the branch between
two species (from ancestor to descendant), evolutionary operations could hap-
pen. In this paper, we assume that the species tree is already known, and it has
been rooted and directed.
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Fig. 1. (A) Species tree of modern species A, B, C, and D. Gene trees of gene family
a and b are in (B) and (C), respectively. Branch length d(D[a.1], I [a]) + d(I [a], F [a])
in (B) is equivalent to the branch length d(D, G) + d(F, G) in the species tree. We
also have d(D[b], F [b]) > d(D, G)+d(F, G). For other branch lengths in the gene trees,
we have: d(A[a.1], E[a.1]) = d(A[a.2], E[a.2]) = d(A[b.1], E[b.1]) = d(A[b.2], E[b.2]),
d(B[a.1], E[a.1]) = d(B[a.2], E[a.2]) = d(B[b.1], E[b.1]) = d(B[b.2], E[b.2]),
d(D[a.1], I [a]) = d(D[a.2], I [a]), d(C[b.1], J [b]) = d(C[b.2], J [b]), d(E[a.1], H [a]) =
d(E[a.2], H [a]) = d(E[b.1], H [b]) = d(E[b.2], H [b]), d(H [a], F [a]) = d(H [b], F [b]),
d(C[a], F [a]) = d(C[b.1], J [b]) + d(J [b], F [b]).

A gene tree, on the other hand, is an unrooted tree, characterizing the rela-
tionships among genes in the same gene family across different species (Fig.1(B)
and (C)). It also has branch lengths associated with each branch in the tree. In
this paper, we have two assumptions for gene trees: (1) the duplication events
have been dated and they are consistent with what happened in nature, e.g. du-
plication event I[a] in Fig.1(B); (2) in the gene tree, all the branch lengths are ex-
act. Therefore, if in the following reconciliation step, a node in the gene tree turns
out to correspond to a speciation event, then it has a perfect match to the node in
the species tree, e.g. in Fig.1 the distance from A[a.1] to E[a.1] in (B) is exactly
the same as the distance from A to E in (A), i.e. d(A[a.1], E[a.1]) = d(A, E).

A reconciled tree is a mapping between all gene trees and the species tree
with gene duplications and losses being postulated [15]. In order to get the rec-
onciled tree, we merge the unrooted gene trees into the rooted species tree. A
reconciled tree, denoted as T, represents all speciation and duplication events
that have left a record of their effects in the leaf genomes. We start with the
species tree and reconcile the gene trees into it one at a time. The species
tree as well as the two gene trees in Fig.1 can be reconciled into Fig.2(A).
Our reconciliation algorithm is less complicated than the traditional methods,



A Heuristic Algorithm for Reconstructing Ancestral Gene Orders 125

e.g. [16] and [17], because in our case the true species tree is known and the
distances in the gene trees are exact. (See Appendix for detailed reconciliation
algorithm).

Each reconciliation labels the bifurcating nodes of the gene tree being recon-
ciled as either duplication nodes or speciation nodes, maps the speciation nodes
to the corresponding speciation nodes in the species tree, and maps the dupli-
cation nodes to inferred duplication nodes along the branches of the species tree
(Fig.2(A)). The final reconciled tree includes these additional duplication nodes
(Fig.2(B)). Each node in the reconciled tree is a genome. If there are duplications
that occurred before the root of the species tree, then the root of the reconciled
tree is an ancestor of the species tree root, and these ancient duplications are
represented on an additional path leading from the root in reconciled tree to the
root of the species tree within it, e.g. node K in Fig.2.

During the reconciliation, genes are also added along the branches of each
gene tree to represent intermediate forms that are inferred to have existed at
duplication branches but do not appear in the original gene tree for the family
(Fig.2(A), e.g. gene a in J). The resulting gene trees are called augmented
gene trees and denoted Ta for gene family a. For each node x in Ta, there is a
mapping φ that maps x to a node y in T, i.e. y = φ(x), indicating the genome y
that gene x belongs to. Also, the root of an augmented gene tree need not always
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Fig. 2. (A) The reconciled tree from species tree and gene trees of gene family a and
b. Node I , J , K, and H show four duplications; K is an ancient duplication. (B) A
simplified form of reconciled tree T. (C) augmented gene tree Ta. (D) Tb.
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map to the root of the reconciled tree. If the gene family is first introduced by
an insertion event, then the last common ancestor in the reconciled tree of all
the observed genes in the family may be a node below the root. For example, in
Ta the root does not map to K in the reconciled tree. We could interpret gene
family a as an insertion before G but after K in the reconciled tree.

Along branch h to g in the reconciled tree, we define Ãh(g[x]) as the direct
ancestor of g[x] in h and D̃g(h[x]) as the set of direct descendants of h[x]
in g. Note that D̃(h[x]) could contain two descendants if x is duplicated at h. If
g[x] has no ancestor, then Ãh(g[x]) = ∅. Conversely, if h[x] has no descendant
in g, D̃g(h[x]) = ∅. For example, in Fig.2, ÃE(B[a.1]) = E[a.1], D̃C(J [b]) =
{C[b.1], C[b.2]}.

2.3 Reconstructing Ancestral Adjacency

After obtaining a reconciled tree T and augmented gene trees Ti (for all gene
family i), our goal is to determine a set of lists of gene orders that closely
approximates the genome structure of the species corresponding to a target
ancestral genome in T.

For any genome g, we associate with each gene x two sets of signed genes,
denoted Pg(x) and Sg(x), giving potential predecessors and successors of x rel-
ative to chromosomes of g. If g is a modern genome, Pg(x) = {pg(x)} and
Sg(x) = {sg(x)}, for each x. If g does not contain x, then both sets are empty.
We also define that Ãh(Pg(x)) = {Ãh(yi) | yi ∈ Pg(x)}. D̃h(Pg(x)) can be
defined analogously.

We use Ng to denote the number of genes in genome g, which can be counted
directly from the reconciled tree. For example, NE = 4 in the example in Fig.2.

The inference procedures of predecessor and successor associated with each
gene in the gene tree is similar to the method in [8]. The first stage of the al-
gorithm works in a bottom-up fashion. The general idea is that, for each node
π in the gene tree, we compute its predecessor set according to the following
rule: If π is a leaf, then predecessor set consists of the unique predecessor. Oth-
erwise, assume π has children τ and ϕ; then, the predecessor set is equal to the
intersection or union of the predecessor sets of τ and ϕ depending on whether
their predecessor sets are disjoint or not. The second stage works in a top-down
fashion to adjust the predecessor sets. Similarly, we infer the successors.

The procedure Get-Predecessor-Successor-Bottom-Up(root(Ti)) con-
structs Pg(x) and Sg(x) for each gene x of gene family i in every ancestral genome
g, where root(Ti) denotes the root of Ti. Suppose π is the current node and τ and
ϕ are the two direct descendants of π in Ti. Note that either τ or ϕ might be null.

Get-Predecessor-Successor-Bottom-Up(π)
1 if π is not null and π is non-leaf node
2 then Get-Predecessor-Successor-Bottom-Up(τ)
3 Get-Predecessor-Successor-Bottom-Up(ϕ)
4 h ← φ(π); f ← φ(τ); g ← φ(ϕ)
5 if ‖ Ãh(Pf (τ)) ∩ Ãh(Pg(ϕ)) ‖�= 0
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6 then Ph(π) ← Ãh(Pf (τ)) ∩ Ãh(Pg(ϕ))
7 else Ph(π) ← Ãh(Pf (τ)) ∪ Ãh(Pg(ϕ))
8 if ‖ Ãh(Sf (τ)) ∩ Ãh(Sg(ϕ)) ‖�= 0
9 then Sh(π) ← Ãh(Sf (τ)) ∩ Ãh(Sg(ϕ))

10 else Sh(π) ← Ãh(Sf (τ)) ∪ Ãh(Sg(ϕ))

The root of the reconciled tree T is not always the target genome we want to
reconstruct. Therefore, we first infer PR(x) and SR(x) in the common ancestor
R in T. Then we propagate PR(i) and SR(i) down the tree until we reach the tar-
get ancestor α. We use Adjust-Ancestor-Top-Down to adjust the original
Pg(xi) and Sg(xi) for every gene xi in genome g leading from R to α, assuming
that the path from R to α has already been recorded (the .next field means the
next node on the path from R to α).

Adjust-Ancestor-Top-Down(R, α)
1 h ← R; g ← R.next
2 while h �= α
3 do for each xi ∈ X where X = x1, −x1, ..., xNg , −xNg

4 do if ‖ Ãh(Pg(xi)) ∩ Ph(Ãh(xi)) ‖�= 0
5 then Pg(xi) ← Pg(xi) ∩ D̃g(Ãh(Pg(xi)) ∩ Ph(Ãh(xi)))
6 if ‖ Ãh(Sg(xi)) ∩ Sh(Ãh(xi)) ‖�= 0
7 then Sg(xi) ← Sg(xi) ∩ D̃g(Ãh(Sg(xi)) ∩ Sh(Ãh(xi)))
8 h ← g; g ← g.next

At this point, in the target ancestor α, we have had potential predecessors and
successors for each gene. The remaining task is to reconstruct the order based
on adjacency information.

2.4 From Ancestral Adjacency to Ancestral Gene Order

We first construct a predecessor graph GP
α and a successor graph GS

α for
the target genome α. The digraph GP

α = (V, E), where |V | = 2Nα, is defined
such that each genexi corresponds to two nodes, i and −i, and the set of directed
edges is: E(GP

α ) = {(u, v) | u ∈ Pα(v)}. Similarly, in digraph GS
α = (V, E),

|V | = 2Nα, and: E(GS
α) = {(u, v) | v ∈ Sα(u)}. Here, (u, v) denotes an arc

directed from u to v. Note that an edge in GP
α is from the predecessor, while an

edge in GS
α is to the successor. For instance, let g have the chromosome (1 -4 -3

5.1 2). Then GP
g and GS

g are as shown in Fig.3(A) and (B), respectively.
We intersect GP

α and GS
α, producing the intersection graph G = GP

α ∩ GS
α,

retaining edges that are not connecting to either of the endpoints, ΦA and ΦZ .
Then special care is taken to add endpoint edges, basically retaining all the
endpoint edges that appear in both GP

α and GS
α. All three graphs (predecessor,

successor, and intersection) have the same set of 2Nα nodes. G’s edges are:

E(G) =
{
E(GP

α ) ∩ E(GS
α)

}

∪
{
(ΦA, v) | (ΦA, v) ∈ E(GP

α )
}

∪
{
(u, ΦZ) | (u, ΦZ) ∈ E(GS

α)
}

(1)



128 J. Ma et al.

1 4 3 5.1 2

-1 -4 -3 -5.1 -2

0

1 4 3 5.1 2

-1 -4 -3 -5.1 -2

0

(A) (B)

Fig. 3. (A) A predecessor graph GP
g ; (B) A successor graph GS

g

The edges of the intersection graph G indicate consistent predecessor and succes-
sor relationships that are supported by T, Ti and the modern genomes. However,
they do not necessarily indicate a unique adjacency relationship for a particular
gene. Three potential ambiguous cases might occur in the intersection graph, as
depicted for node i in Figure 4. In (a), i has several incoming edges. In (b), i
has several outgoing edges. In (c), i forms a cycle with j, where each node j
satisfies indegree(j) = outdegree(j) = 1. (If a more complex cycle exists, then
some node falls in either case (a) or case (b)).

j

k

i

j

k

i

ji

(a) (b) (c)

Fig. 4. Three potential ambiguous cases in the intersection graph G

If none of these ambiguous cases is present, the intersection graph itself forms
the set of paths that covers all the nodes. In this case, the CARs can be directly
defined from this graph as discussed below. When ambiguity exists, we need to
resolve the ambiguity and choose appropriate directed edges to form CARs. We
assign a weight to each of the directed edges in the remaining graph using the
following approach.

For an directed edge (i, j), if outdegree(i) = 1 and indegree(j) = 1 (in other
words, it is not among one of the incoming edges of case (a) nor it is among one of
the outgoing edges of case (b)), we set wα(i, j) = 1. Otherwise, the corresponding
weight wα(i, j) is determined recursively by:

wα(i, j) =
d(α, τ) · wϕ(i, j) + d(α, ϕ) · wτ (i, j)

d(α, τ) + d(α, ϕ)
(2)

where d(α, τ) and d(α, ϕ) are the branch lengths to the left child and right
child; wτ (i, j) and wϕ(i, j) are the edge weights on left child and right child,
respectively. On a leaf genome, if (i, j) is present in the predecessor graph, we
set w(i, j) = 1, otherwise w(i, j) = 0. This kind of edge weight can also be
determined by a postorder traversal. Note that if an edge (i, j) is involved in
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ambiguous case (a) or (b), w(i, j) < 1. The underlying assumption of equation
2 is that rearrangement is more likely to happen on longer branches.

Our goal is to connect elements into the longest possible CARs that are con-
sistent with the observed data. The problem can be transformed into looking for
vertex-disjoint paths that cover all the nodes in the digraph G with the maxi-
mum weight. Here we also allow degenerate paths, where there is only one node.
The simplified version of this problem when all the edge weights are the same,
say 1, is equivalent to the Minimum Path Cover Problem, i.e., finding the mini-
mum number of vertex-disjoint paths covering all the nodes in the digraph. The
minimum path cover problem was proved to be NP-hard [18].

We use a greedy approach to achieve an approximate solution, given in the
algorithm of Find-Cars below. We first sort the edges by weight. Then the
greedy approach always tries to add the heaviest edge to the resulting path set.

Find-Cars(G)
1 Sort edges by weight in descending order.
2 Create a new graph C, V (C) = V (G) and E(C) = ∅
3 for each available (i, j) ∈ E(G), in order of edge weight
4 do if outdegree(i) = 0 and indegree(j) = 0
5 then Add edge (i, j) and (−j, −i) to E(C)
6 Update outdegree(i) and indegree(j) in C
7 Break cycles in C.
8 return C.

Note that the simple greedy process doesn’t guarantee there will be no cycle in
the path set. We need a final step (line 7) to detect and break the cycles. We use
the depth-first-search algorithm to detect cycles in graph G. In fact, we can prove
that if there is a cycle, the weight of each edge in that cycle is 1. Therefore, we can
simply discard an arbitrary edge to break the cycle (In a variant where circular
chromosomes are considered, then cycles would be allowed). The remaining paths
in G correspond to the CARs we want to reconstruct.

When adding edges into an existing path, particular care is needed to avoid
putting j and −j in the same CAR. In addition, we add both (i, j) and its
symmetric version, (−j, −i). For each path found by this approach, a symmetric
path in the opposite orientation is also found, since we have nodes for both i
and −i. The two paths correspond to the same CAR, and eventually we choose
one of them.

2.5 Summary

In outline, the whole Infer-Cars-With-Dup algorithm can be described as
follows, where α is the target ancestor, and G denotes the collection of modern
genomes.
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Infer-Cars-With-Dup(α)
1 Construct T and Tx (for each gene family x)
2 C ← empty set of CARs
3 R ← root(T)
4 Initialize Pg(i) and Sg(i) for each gene i in every g in G

5 for each gene family i
6 do Get-Predecessor-Successor-Bottom-Up(root(Ti))
7 Adjust-Ancestor-Top-Down(R, α)
8 Get graph G according to Equation (1)
9 C ←Find-CARs(G)

10 return C

3 Results

3.1 Simulation Results

We used extensive simulations to test and validate our analysis. The simulator
starts with a hypothetical ‘ancestor’ genome which evolves into the extant species
through speciation, inversion, translocation, fusion, fission, insertion, deletion,
and duplication. When an operation is applied, the breakpoint is chosen uni-
formly at random from the set of used or unused breakpoints on this chromo-
some, depending on the breakpoint reuse ratio. The length of the operation is
also picked uniformly at random within the specified distance from the first
breakpoint.

We tuned the weights of these operations in order to generate simulated
data that makes more biological sense specifically for placental mammalian
genomes. The ancestor genome was assigned around 5,000 genes. The param-
eters or weights of the large scale operations were tuned such that the extant
species had around the same number of genes. The breakpoint reuse ratio was
kept around 8%-10% and each of the extant species had 5%–10% duplicated
genes. We simulated 50 datasets using the phylogenetic tree:

((((human,chimp),rhesus),(mouse,rat)),dog).
On average, the ratio of breakpoint reuse is 9.98%, the ratio of duplicated
genes in each extant species is 8.12% (rhesus), 7.52% (human), 7.26% (chimp),
7.12% (mouse), 7.85% (rat), and 7.23% (dog), respectively. Also, rearrangements
are distributed as 82.33% inversions, 9.40% translocations, 3.86% fusions, and
4.40% fissions. In all the duplication events, 30.40% are tandem duplications and
69.60% are segmental duplications.

We ran our reconstruction program for inferring CARs on each dataset (avg.
running time 14.62min) and compared the predicted adjacencies with the known
(simulated) ones. Our target ancestor was primate-rodent ancestor and dog
was treated as outgroup. For determining the success rate, we considered only
the effective ancestral adjacencies (˜59% of all ancestral adjacencies) that were
broken in at least one lineage in the subtree rooted by primate-rodent ances-
tor, since the unbroken adjacencies will be found by essentially any procedure.
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The frequency of correctly predicted adjacencies was 99.46% (SD=0.43%) for
the primate-rodent ancestor. The reconstruction accuracy of human-rhesus an-
cestor and mouse-rat ancestor is 99.75% (SD=0.27%) and 99.72% (SD=0.25%)
respectively.

We did some additional experiments to see how the performance changes in
the primate-rodent ancestor if we change parameters in the simulation. We made
the effective ancestral adjacency vary by using different number of rearrangement
operations. Interestingly, the accuracy didn’t change much. For example, when
the effective ancestral adjacency is around 10%, the accuracy is 99.67%. When
the effective adjacency is around 70%, the accuracy is 99.45%. We think the
accuracy didn’t really depend on effective adjacency because we used six species
in this simulation. We also increased the breakpoint reuse ratio to around 40%
when the effective adjacency ratio is 70%, then the accuracy dropped to 96.83%.
We concluded from these preliminary experiments that when the number of
leaf genomes is reasonable, the reconstruction performance isn’t hurt much if
we increase the number of operations (as reflected in the effective adjacencies).
Instead, the performance will be suffered if we increase the breakpoint reuse ratio
to let one ancestral adjacency be broken independently in different lineages.

3.2 Application to Real Data

It has been shown that the unicellular eukaryote Paramecium tetraurelia, a
ciliate, which contains about 40,000 genes, is a result of at least three whole
genome duplication (WGD) with additional rearrangement operations [19]. In
that paper, the authors reconstructed the genome architectures of four ancestral
genomes, corresponding to the most recent WGD, the intermediary WGD, the
old WGD, and the ancient WGD. They used Best Reciprocal Hits to construct
a paralogon, which is a pair of paralogous blocks that could be recognized as
deriving from a common ancestral region. Then paralogons were merged into
single ancestral blocks and the process was iterated until reaching the ancient
WGD. However, they didn’t intend to figure out the gene orders in each ancestral
block. When a paralogon was constructed, the detailed order and orientation of
genes inside the block were ignored.

All 39,642 genes form 22,635 gene families (including 11,740 single-gene fam-
ilies), which have been scattered on 676 scaffolds in the present day genome.
We tested our algorithm by reconstructing all WGDs except the ancient WGD.
We used the gene order in modern Paramecium tetraurelia and the gene trees
from [19]. The reconciled tree contains one leaf genome, which is the modern
genome, as well as ancestral nodes representing duplication events. We built the
augmented gene trees accordingly.

Many genes do not have paralogous genes in the paralogons for a particular
ancestral genome. If we include all the gene families in the reconstruction, the
input data would be very noisy and the resulting CARs would be too fragmented
due to the fact that we only have one leaf genome. For example, if we include
all the genes, there are 1,937 reconstructed CARs in the old WGD. Therefore,
when we were reconstructing CARs in a certain target genome, we did some
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Table 1. Number of CARs we reconstructed in three target ancestral genomes

target ancestor genes we
included

anc genes
with paralog
(from [19])

gene families
we used

predicted
CARs

anc blocks in
[19]

Old WGD 2,981 1,530 559 57 43
Intermediary

WGD
11,620 7,996 3,770 144 81

Recent WGD 25,708 24,052 9,951 228 131

preprocessing to only retain genes that have paralogous genes derived from more
ancient duplications. Additional genes were also added if their paralogs (from
this duplication) were retained in the leaf genome.

For all three genomes, the number of CARs reconstructed by us is greater than
the number of ancestral blocks reported in [19] using the paralogon method to
construct ancestral blocks. There are two reasons for this: (1) The authors of
[19] ignored the gene orders while we take order andorientation into account
when inferring CARs. (2) We used more genes in the reconstruction than just
the ancestral genes with paralogs, which were essentially used as anchors when
building paralogons.

Since paper [19] didn’t reconstruct the ancestral gene adjacencies, we couldn’t
compare our prediction with theirs in detail. Preliminary comparison showed
that our prediction has basically and more detailed refinement than the result
from [19]. Also, recent studies on genome halving problem [20,21,22,23] might
be particularly useful and interesting to be applied to the Paramecium genome.
As further ciliate genomes become available, we plan to further investigate the
changes of gene orders between different WGDs, using additional outgroup in-
formation from closely related species to pick up more adjacencies we couldn’t
reconstruct now, which will help to determine which methods of reconstructing
ancestral architecture are best, and might shed more light on the evolution of
the ciliate Paramecium tetraurelia.

4 Discussion

In this paper, we extend the method in [8] to reconstruct ancestral gene orders
with duplications. We have a simplifying assumption that all the distances in
the gene trees are perfect, which makes it easy to reconcile gene trees to the
species tree. In reality, we usually have gene trees with approximate distances.
Therefore, a more robust reconciliation method is needed, e.g. [24] and [25]. This
is a key area for further work.

Our future work will also focus on incorporating the ability to reconstruct
evolutionary history with large-scale operations, instead of just figuring out the
gene orders. Although solving the median problem is algorithmically challenging,
it is completely feasible to provide a plausible history of rearrangements and
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duplications on each branch in the phylogeny when the descendant genome and
the ancestor genome have been both predicted.

Our simulation on large-scale mammalian genome evolution looks promising.
However, a number of challenges remain before the genome structure of mam-
malian ancestors can be accurately predicted in terms of rearrangements and
duplications, among which the most difficult would be partitioning the genomes
and accurately dating the duplication events.
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Appendix

We discuss in detail the algorithm for determining the reconciled tree and aug-
mented gene tree. Let S be a rooted species tree and A be an unrooted gene
tree. We assume that S has an infinitely long incoming edge leading into its root
to accommodate ancient duplications, if needed. A reconciliation of A with S
is a mapping φ from the nodes of A into the set of nodes and points along the
edges of S with the following properties: (1) Every leaf l of A maps to a leaf φ(l)
of S of the same species; (2) Each internal node a of A maps to a point φ(a) in
S that lies either at a node or at a point on an edge in S; and (3) The mapping
φ is isometric in the sense that for every leaf node l in A, the distance from a to
l in A is the same as the distance from φ(a) to φ(l) in S. When φ(a) is a node
in the species tree S, we say that a is a speciation node in A, and when φ(a) is
a point that lies along an edge in S we say that a is a duplication node in A and
we create a corresponding duplication node at φ(a) in S.

Any internal node x in the unrooted binary tree A will be connected to three
other nodes u, v, and w, defining three possible rooted and directed subtrees U ,
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V , and W of A, respectively. If A is to be successfully reconciled with S, two
of these subtrees, say U and V , must map to directed subtrees of S in such a
way that φ(x) lies above φ(u) and φ(v). To define the complete reconciliation,
we proceed inductively, assuming that we have already reconciled subtrees U
and V of A, and extending this reconciliation to include x. Let d′1 and d′2 be the
distances in A from x to u and v to x, respectively. Let x̃ be the last common
ancestor of φ(u) and φ(v) in S. Let d1 and d2 be the distances in S from φ(u)
and φ(v) to x̃, respectively. We will have d = d′1 + d′2 − d1 − d2 ≥ 0. Then the
subtree of A rooted at x and containing U and V can be reconciled with S by
extending the reconciliation of its subtrees U and V by adding a point φ(x). The
point φ(x) must lie at a distance d/2 upstream from x̃ in S, along the unique
path in S leading into x̃. Such a point always exists in S because we have added
an infinitely long stem branch leading into the original root of S. If d = 0, then
φ(x) = x̃. It is clear that the distance from φ(x) to φ(l) for any leaf l in U
or V must be correct, since the distances from φ(u) and φ(v) are correct by
the inductive hypothesis, and the additional distance added from φ(u) or φ(v)
to φ(x) in the above construction is exactly the increment needed to keep the
distances correct.

So long as A has more than one node, the inductive construction terminates
with two adjacent nodes y and z that dominate all other nodes in A, in the sense
that both the subtree Y rooted at y and pointing away from z, and the subtree
Z rooted at z and pointing away from y, are reconciled into subtrees of S. Then
the final step is to determine the root of the gene tree. Now let d be the distance
between y and z in A. Let r̃ be the last common ancestor of φ(y) and φ(z) in S.
Let d1 and d2 be the distances in S from φ(y) and φ(z) to r̃, respectively. We
define the root r of the gene tree A as the point at distance (d+ d1 − d2)/2 from
y and (d + d2 − d1)/2 from z along the edge connecting y and z, and φ(r) as
the corresponding point at distance (d − d1 − d2)/2 upstream from r̃ in S. This
completes the reconciliation.

We construct the reconciled tree by repeating the above procedure for each
gene tree. Each reconciliation adds new duplication nodes to S until the final
reconciled tree T is built.
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