

Supporting Online Material for

Molecular and Genomic Data Identify the Closest Living Relative of Primates

Jan E. Janečka, Webb Miller, Thomas H. Pringle, Frank Wiens, Annette Zitzmann, Kristofer M. Helgen, Mark S. Springer, William J. Murphy*

*To whom correspondence should be addressed. E-mail: wmurphy@cvm.tamu.edu

Published 2 November 2007, *Science* **318**, 792 (2007) DOI: 10.1126/science.1147555

This PDF file includes:

Materials and Methods Figs. S1 to S14 Tables S1 to S5 References

SUPPORTING ONLINE MATERIAL

Janecka et al. "Molecular and Genomic Data Identify the Closest Living Relative of Primates."

Materials and Methods,

Screening for Candidate Indels and Analysis. General Strategy:

We used an approach similar to (S1) for discovering indels in protein-coding regions that provide evidence for alternative phylogenetic hypotheses for Euarchonta: 1.) basal Dermoptera (colugos) within Euarchonta, 2.) Primatomorpha (Dermoptera+Primates), and 3.) Sundatheria (colugos and treeshrews as a sister clade to Primates). Specifically, an indel shared by treeshrew and primates, but not with colugo and other eutherians (say, rodents or carnivores), would support a basal position for Dermoptera within Euarchonta. Similarly, an indel shared by colugo and primates relative to treeshrew would support the Primatomorpha hypothesis, while an indel shared by colugos and treeshrews relative to Primates and outgroup species would support Sundatheria. The screen for indels supporting the first case (treeshrew and Primates) would also recover evidence supporting monophyly of Euarchonta, i.e., cases where the colugo has the same fragment size as Primates and treeshrews and different from all other placental mammals. In addition, we performed a search for indels supporting alternative hypotheses (i.e., treeshrews+Glires, or treeshrews basal among Euarchontoglires). The search for potentially informative indels was complicated by the lack of genome sequence data for colugo. Therefore, we used PCR-based methods (described below) to determine whether the interval in colugo either supported Primatomorpha (if the colugo sequence agreed with primates by having the indel) or was non-informative (i.e., agreed with treeshrew and confirmed monophyly of Primates). Similar reasoning was used to screen for the two alternate hypotheses.

Genome Alignments:

We screened a non-redundant set of 197,522 protein coding exons from the UCSC KnownGenes track whole-genome coding sequence alignments for potentially informative indels in primate, treeshrew, and dog and mouse as outgroup genomes, and then performed computational and PCR-based approaches (S1) with colugo DNA to evaluate indels and their phylogenetic distribution. During the initial search for candidate indels, the screening was performed with a program available as part of a package called "Phylogenomic Tools", which is freely available at http://www.bx.psu.edu/miller lab/. First, we used a human-galago (Otolemur garnetti) pairwise alignment, a human-treeshrew (Tupaia belangeri) pairwise alignment, and a multi-species alignment of 17 vertebrate genomes (available at the UCSC Genome Browser Gateway: http://genome-test.cse.ucsc.edu/index.html). Later we used a 28-way alignment (S2) that included the treeshrew sequence, and searched it without reference to the pairwise alignments. In general, gaps in multiple alignments tend to be more consistently placed (e.g., an insertion in human relative to galago and an insertion in human relative to treeshrew occur at precisely the same position in the human sequence) than gaps in independently computed pairwise alignments, because the multi-alignment process forces them to agree. Thus with highstringency criteria that require agreement among a number of species, such as those we used for our initial search, use of pairwise alignments tends to produce fewer candidates.

Prior to primer design, we prescreened all candidate indels and their flanking sequences in the alignments to identify cross-matched paralogs (arising from incomplete 2X genome assemblies), cases of indels with simple repeats, highly diverged sequences, and examples that exhibited inconsistent phylogeny with current superordinal phylogenies (e.g., S3). Whole genome shotgun (WGS), high throughput genomic sequences (HTGS), and genomic survery sequences (GSS) are divisions of GenBank nr nucleotide early assemblies lacking genome browsers at time of article submission. WGS, despite the name consists of small to large contigs assembled from trace reads. The highest status assembly (Table S1) was used initially to recover the orthologous

exon sequence so as not to second-guess mature trace assembly software that optimally exploits read quality data. However for the critical set of species flanking the divergence node in question and for any assembly yielding an anomolous sequence in terms of the overall alignment or indels, each applicable trace match in the archive was further examined for consistent status of the indel, degree of local coverage, supporting evidence for orthology, additional individual animal data, and the possibility of polymorphisms, heterozygosity, lineage-specific duplications, and other trace tiling choices that might not be apparent in the assembly. Data for species such as guinea pig, elephant, and armadillo was split evenly between older assemblies and millions of newly arrived trace reads on 15 June 2007. Other species had singleton traces not included in their assembly; ESTs and cDNA sequences were sometimes available even when genomic data was missing. These were consulted if the exon could be reliably found in the highest status assembly.

Candidate Screening Guidelines/Quality Control

The issue of paralogs must be taken very seriously because data is largely derived from incomplete early assemblies, low coverage trace read compilations, and non-exhaustive cDNA surveys. Without additional quality assurances, best-blast matches alone might pull in paralogs from species where the ortholog was not yet under coverage. These measures are discussed to a certain extent in the text and supplemental material in our recent paper on Atlantogenata-defining indels (S1). We are concerned here only with indels of individual exons, so paralogous in this context means extra copies of that exon rather than say its whole PFAM domain (if any) or fulllength enveloping gene. These extra exon copies might include internal repeats, partial tandem duplication or debris, segmental duplications, processed retrogenes, and processed pseudogenes in addition to conventional gene family members. With so many species (total branch lengths exceed a billion years for each informative exon) lineage-specific contractions and expansions could reasonably occur. Further, these extra copies might interact confusingly with the actual ortholog via gene conversion or non-orthologous recombination, possibly repeatedly over the time spans involved here. Fortunately, paralogous copies generally replicate the indel status at the time of duplication and so, even if mixed in, do not necessarily affect phylogenetic scoring. While no set of checks on incomplete genomes can be infallibile, we expect that our implementation of the following quality measures greatly reduces the likelihood of paralogous contamination of our multi-species ortholog compilations. Our screening methodology requires sequential use of largescale comparative genomics (the 28-species alignment), a stringent algorithmic screening protocol, and extensive hand-curation of the resulting (manageable) list of surviving candidates. Each case raises its own narrow curational issues; for reasons of space and lack of generality we do not provide details for each situation encountered on an individual basis.

a. Blat and Blast clustering. For each candidate indel, we first examined the number and quality of protein Blat matches, next at GeneSorter (precomputed Blastp alignments of every gene against the entire human proteome), then at alignment in the 28-species genomic alignment, all features provided by the UCSC genome browser, and finally at tBlastn cross-species matches at the nr, htgs, gss, est and wgs database divisions of GenBank (the last database contains species with 2x or better assemblies). Secondary Blastn matches at the trace archive are also examined when that is the best available data source. Our candidate exons are already filtered by the initial algorithm to require high degree of conservation and exclude compositional simplicity. A numbered gene like *NCOA4* implies previously recognized family members. A high Blast score might result at the level of a full length gene without necessarily giving match quality for the indel-containing exon at issue. Therefore we defined match quality to include score, percent identity, residue similarity, invariant residues, and signature motif conservation. We also required disjoint clustering (i.e. the *NCOA4* exon ortholog from any mammal in the compilation scores better against all other *NCOA4* exons than against any paralogous NCOAx human exon). As a practical matter (since not all sequences reside in any single querable GenBank division), a

compiled database of orthologous and paralogous exons in fasta format was queried at <u>http://www.proweb.org/proweb/Tools/WU-blast.html</u>.

b. Stabilizing effect of established orthologs: Some species, by virtue of stronger assemblies (e.g., rhesus, mouse, dog, opossum) or phylogenetic proximity to human (hence minimal sequence separation, e.g. chimp, orangutan), seed the overall alignment with near-certain orthologs, placing strong expectations on residual intercalated species (e.g. marmoset, rat, cat, elephant). The effect is that inadvertent paralogous sequences are readily recognized as inappropriate. Comparative genomics at the level of a few dozen species is thus somewhat selfcorrecting. That applies as well to individual aa residue anomalies that can arise from trace read frameshift errors or peak compression. These required additional manual curation effort. c. Splice position and phase: An internal indel-containing exon has two flanking introns of specific phases, a leading exon and initial methionine and a single downstream intron, a terminal exon a single upstream intron and a stop codon. We required these features to be strictly conserved in all putative orthologs. This excludes processed retropositioned paralogs and older members of some gene families. This test is available for trace, contig, and assembly data but not for (intronless) transcripts where only the methionine and stop codon can be checked. d. Synteny: The putative orthologs were required to be in homologous chromosome positions; more restrictedly, the left- and right-flanking genes of the gene containing the exon were required to correspond in other species (with >6X assemblies) in both position and orientation to those of human. This excludes some rearrangement mechanisms leading to paralogous copies (multi-gene block duplications need best-blast for follow-up). We did not pursue candidates located at extreme telomere and centromere positions in human as these are prone to duplication. The restricted synteny test is implemented by tBlastn of the three gene concatenate against the wgs division of GenBank. This test is not available for trace and transcript-only species and works spottily when intergenic distances are long relative to assembled contig lengths.

PCR-validation:

Prior to PCR-based validation, we excluded candidate indels that had insufficient flanking sequence to design appropriately conserved primers for PCR analysis. Remaining candidate primer pairs were first tested for amplification in colugo (*Cynocephalus volans*) with capillary-based fragment-size analysis (ABI 3730, Foster City, CA), with appropriate control DNAs of known fragment size (e.g., *Tupaia*), with fluorescent-labeled primers and/or direct-sequence-based determination of indel sizes. Those PCR primers that amplified in colugo (and were therefore potentially informative) were also examined in other treeshrews (*Urogale* and *Ptilocercus*) and the second extant colugo (*Galeopterus variegatus*). Exonic regions were then sequenced and aligned to existing coding alignments with CLUSTAL X (*S4*). These sequences have been deposited in GenBANK under accession numbers EU142217-EU142251. Additional eutherian species were added from whole genome assemblies and sequence traces deposited in public databases (Table S1), followed by electronic validation and curation to rule out paralogs and pseudogenes, as described above.

Nuclear DNA Phylogenetic Analysis and Topology Tests.

We compiled a 14,085-bp DNA alignment from 19 nuclear gene segments for 16 euarchontoglires, including 3 rodents (Eastern Chipmunk *Tamias striatus*, American Beaver *Castor canadensis*, South African Springhare *Pedetes capensis*), 2 lagomorphs (Eastern Cottontail Rabbit *Sylvilagus floridanus*, Northern Pika *Ochotona hyperborea*), 2 colugos (Sunda Colugo *Galeopterus variegatus*, Philippine Colugo *Cynocephalus volans*), 6 primates (Ring-Tailed Lemur *Lemur catta*, Gray Mouse Lemur *Microcebus murinus*, Bushbaby *Otolemur garnettii*, Black-Headed Spider Monkey *Ateles fusciceps*, Rhesus Macaque *Macaca mulatta*, Human *Homo sapiens*), and 3 treeshrews (Lesser Treeshrew *Tupaia minor*, Mindanao Treeshrew *Urogale everetti*, Pen-Tailed Treeshrew *Ptilocercus lowii*). The *P. lowii* specimen analyzed in this study originated from Malaysia (Telok Senangin, Manjung District, Perak, West Malaysia, 4°18'N, 100°34' E; permits UPE 40/200/19 SJ. 179, 1074, 1290 to A. Zitzmann and F. Wiens). The 19 nuclear gene segments included ADORA3, ADRA2B, ADRB2, APP, ATP7A, BCHE, BDNF, BMI1, CNR1, CREM, EDG1, FBN1, PLCB4, PNOC, RAG1, RAG2, two segments from TTN, and TYR. This dataset expands upon smaller published matrices (S5-S7). To generate a larger and nearly complete data set that includes additional taxon sampling from all major lineages of Euarchonta, we added five new nuclear gene segments (ADRA2B: 1,218-bp, FBN1: 736-bp, BCHE: 989-bp, and two segments from exon 45 of TTN: 1,219-bp and 1,691-bp) with previously described amplification and sequencing protocols (S5, S8). A list of all new and published sequences used in our analyses is in Table S2. Primers (Table S3) were designed to include degenerate sites and were used to amplify ADRA2B in U. everetti and Cynocephalus volans, CREM in Ptilocercus lowii, PNOC in Cynocephalus volans, RAG1 in Cynocephalus volans, and TYR in Ptilocercus lowii. Degenerate primers were used to amplify FBN1 in Cynocephalus volans, U. everetti, Ptilocercus lowii, and Microcebus murinus. All TTN segments were amplified exclusively with degenerate primers modified from (S7). Missing data was supplemented with whole genome shotgun reads deposited in the trace archive database (Table S1).

Sequences for each gene segment were aligned individually in CLUSTAL X (S4) with default parameters and manually corrected to minimize the number of indels. After exclusion of ambiguously aligned regions, the final data matrix included 13,080-bp. The Akaiki Information Criterion in MODELTEST, vers. 3.07 (S9) was used to select the most appropriate evolutionary model (general-time-reversible + gamma + invariants, GTR + Γ + I) and parameters. These starting parameters were used to reconstruct a ML tree with a full heuristic search with a neighbor-joining (NJ) starting tree and tree-bisection-reconnection (TBR) branch swapping in PAUP* (S10). Model parameters were then reestimated from the ML tree, and incorporated in subsequent iterative ML searches with re-estimation, until the model parameters stabilized. The final parameters were used to reconstruct an ML phylogeny, and perform an ML bootstrap evaluation with 100 heuristic replicates with TBR. The phylogeny of these sequences was also estimated with MR. BAYES version 3.1.2 (S11). The character matrix was divided by gene segment, where each gene was assigned its own model of evolution. Model selection was estimated on the basis of MODELTEST results. Two independent runs were performed with 4 independent chains, sampled every 1,000th generation for 5 million generations. The first 1 million generations were discarded as burn-in. We determined convergence between the two runs when the average standard deviation of split-frequencies was less than 0.01. An additional MR.BAYES analysis was performed on the basis of a codon site-specific model for the nuclear protein coding genes, versus the non-coding 3'-untranslated region gene segments, under the same run conditions as the gene-segment partitioned analysis. This analysis produced identical results with the gene-segment based analysis.

Statistical Tests. A statistical test developed by (*S12*) for analysis of SINEs and other indels was applied to our indel data set. Specifically, we found 7, 1, and 0 indels supporting Primatomorpha (colugos+primates), treeshrews+primates, and Sundatheria (treeshrews+colugos), respectively. Under this test, a score of 4, 1, 0, or better, is statistically significant (P=0.025). Therefore our results reject the other two hypotheses in favor of the Primatomorpha hypothesis. Shimodaira-Hasegawa (S-H) tests (*S13*) of alternative euarchontan topological hypotheses were performed in PAUP with RELL optimization.

Molecular Dating. Divergence dates were obtained with the programs ESTBRANCHES and MULTIDIVTIME (*S13-14*), assuming the final ML topology (Fig. S12). Domestic cat sequences were included for each gene segment to root the tree. Branch lengths and variance-covariance matrices were estimated under the Felsenstein (*S15*) model in ESTBRANCHES, and these branch

lengths were used to estimate divergence times in MULTIDIVTIME. We used the following 8 fossil-based calibration points: (1) 23 My for the minimum age of the hominoidea/ cercopithecoidea split (*S6*), (2) 36 My for the minimum age and (3) 50 My for the maximum age of Anthropoidea (*S6*), (4) 63 My for the minimum age and (5) 90 for the maximum age of Primates [following *S7*], (6) minimum of 43 My for the base of Scandentia (*S16*), (7) minimum of 55 My for the base of Rodentia (*S16*), and (8) a minimum of 37 My for the base of Lagomorpha (*S16*). The prior for the root was set at 91 My, on the basis of previous molecular estimates for the age of Euarchontoglires (e.g. *S1*). Analyses with a 65 My prior, and those iteratively removing each constraint, showed minimal differences in age estimates (Table S4). The prior is not a constraint and is only used in the initial starting parameters.

Species Code	Species	Common Name	Order	Data Source (Assembly Version), Sequencing Center
homSap	Homo sapiens	Human	Primates	Genome sequence (hg18)
panTro	Pan troglodytes	Common Chimpanzee	Primates	Genome sequence (panTro2)
gorGor	Gorilla gorilla	Western Gorilla	Primates	Trace archive, SC
ponPyg	Pongo pygmaeus	Bornean Orangutan	Primates	HTGS, BCM-HGSC, WUGSC
macMul	Macaca mulatta	Rhesus Macaque	Primates	Genome sequence (rheMac2)
calJac	Callithrix jacchus	Common Marmoset	Primates	WGS, WUGSC
tarSyr	Tarsius syrrichta	Philippine Tarsier	Primates	Trace archive, WUGSC
otoGar	Otolemur garnettii	Bushbaby	Primates	Genome sequence (otoGar1), BI-MIT
micMur	Microcebus murinus	Gray Mouse Lemur	Primates	Trace archive, BI-MIT
cynVol	Cynocephalus volans	Philippine Colugo	Dermoptera	Genomic PCR
galVar	Galeopterus variegatus	Sunda Colugo	Dermoptera	Genomic PCR
tupBel	Tupaia belangeri	Northern Treeshrew	Scandentia	Genome sequence (tupBel1), BI-MIT
uroEve	Urogale everetti	Mindanao Treeshrew	Scandentia	Genomic PCR
ptiLow	Ptilocercus lowii	Pen-Tailed Treeshrew	Scandentia	Genomic PCR
musMus	Mus musculus	House Mouse	Rodentia	Genome sequence (mm8)
ratNor	Rattus norvegicus	Brown Rat	Rodentia	Genome sequence (rn4)
speTri	Spermophilus tridecemlineatus	Thirteen-Lined Ground Squirrel	Rodentia	WGS, BI-MIT
dipOrd	Dipodomys ordii	Ord's Kangaroo Rat	Rodentia	Trace archive, BIM-HGSC
cavPor	Cavia porcellus	Domestic Guinea Pig	Rodentia	WGS, BI-MIT
oryCun	Oryctolagus cuniculus	European Rabbit	Lagomorpha	Genome sequence (oryCun1), BI-MIT
ochPri	Ochotona princeps	American Pika	Lagomorpha	Trace archive, BI-MIT
canFam	Canis familiaris	Domestic Dog	Carnivora	Genome sequence (canFam2)
felCat	Felis catus	Domestic Cat	Carnivora	Genome sequence (felCat3)
eriEur	Erinaceus europaeus	Western European Hedgehog	Eulipotyphla	WGS, BI-MIT
sorAra	Sorex araneus	Common Shrew	Eulipotyphla	WGS, BI-MIT
turTru	Tursiops truncatus	Bottlenose Dolphin	Cetartiodactyla	Trace archive, BCM-HGSC
susScr	Sus scrofa	Domestic Pig	Cetartiodactyla	HTGS/EST database
bosTau	Bos taurus	Domestic Cow	Cetartiodactyla	Genome sequence (bosTau2), BCM-HGSC
equCab	Equus caballus	Horse	Perissodactyla	Genome sequence (equCab1), BI-MIT
myoLuc	Myotis lucifugus	Little Brown Bat	Chiroptera	WGS, BI-MIT
pteVam	Pteropus vampyrus	Large Flying Fox	Chiroptera	Trace archive, BCM-HGSC
dasNov	Dasypus novemcinctus	Nine-Banded Armadillo	Xenarthra	Genome sequence (dasNov1), BI-MIT
choHof	Choloepus hoffmanni	Hoffmann's Two-Toed Sloth	Xenarthra	Trace archive, WUGSC
echTel	Echinops telfairi	Lesser Hedgehog Tenrec	Afrosoricida	Genome sequence (echTel1), BI-MIT
loxAfr	Loxodonta africana	African Bush Elephent	Proboscidea	Genome sequence (loxAfr1), BI-MIT
proCap	Procavia capensis	Rock Hyrax	Hyracoidea	Trace archive, BCM-HGSC

Table S1 Taxa examined for indels with species codes used, species names and Orders, and source of data.

SC = Sanger Center

BC-HGSC = Baylor College of Medicine - Human Genome Sequencing Center

BI-MIT = Broad Institute - Massachusetts Institute of Technology

WUGSC = Washington University Genome Sequencing Center

Table S2 List of taxa included in the 14-kb nuclear gene matrix, with GenBank (NCBI) accession numbers for 19 nuclear gene segments. Some segments were obtained from whole genome reference sequences and trace archives (in italics, Broad Institute – Massachusetts Institute of Technology) in GenBank.

				Accession Number
				ADRA2B
Order	Family	Species	Common Name	1218 bp
Glires				
Rodentia	Sciuridae	Tamias striatus	Eastern Chipmunk	AJ315942 ¹
Rodentia	Castoridae	Castor canadensis	American Beaver	AJ427260
Rodentia	Pedetidae	Pedetes capensis	South African Springhare	AM407920
Lagomorpha	Leporidae	Sylvilagus floridanus	Eastern Cottontail Rabbit	Y15946 ²
Lagomorpha	Ochotonidae	Ochotona hyperborea	Northern Pika	AJ427253 ³
Euarchonta				
Dermoptera	Cynocephalidae	Galeopterus variegatus	Sunda Colugo	AJ251182
Dermoptera	Cynocephalidae	Cynocephalus volans	Philippine Colugo	EU142140
Primate	Lemuridae	Lemur catta	Ring-Tailed Lemur	AJ891067
Primate	Cheirogaleoidae	Microcebus murinus	Gray Mouse Lemur	AM050858
Primate	Galagidae	Otolemur garnettii	Bushbaby	AJ251186 ⁴
Primate	Atelidae	Ateles fusciceps	Black-Headed Spider Monkey	AM050855 ⁵
Primate	Cercopithecidae	Macaca mulatta	Rhesus Macaque	AM050852
Primate	Hominidae	Homo sapiens	Human	M34041
Scandentia	Tupaiidae	Tupaia minor	Pygmy Treeshrew	AJ251187 ⁶
Scandentia	Tupaiidae	Urogale everetti	Mindanao Treeshrew	EU142141
Scandentia	Ptilocercidae	Ptilocercus lowii	Pen-Tailed Treeshrew	EU142142

1. Sciurus vulgaris used for Tamias striatus

2. Oryctolagus cuniculus used for Sylvilagus floridanus

3. Ochotona princeps used for Ochotona hyperborea

4. Nycticebus coucang used for Otolemur garnetti

5. Ateles paniscus used for Ateles fusciceps

6. Tupaia tana used for Tupaia minor

Table S2 continued

			Accession N	Number		
	ADORA3	ADRB2	APP	ATP7A	BCHE	BDNF
Species	324 bp	833 bp	699 bp	681 bp	989 bp	582 bp
T. striatus	AY011207	AY011267	AY011330	AY011393	EU142149	AY011457
C. canadensis	AY011208	AY011268	AY011331	AY011394	EU142150	AY011458
P. capensis	AY011210	MISSING	AY011333	AY011396	MISSING	AY011460
S. floridanus	AY011221	AY011282	AY011345	AY011408	EU142151	AY011472
O. hyperborea	AY011222	AY011283	AY011346	AY011409	EU142152	AY011473
G. variegatus	AY011223	AY011284	AY011347	AY011410	EU142153	AYO11474
C. volans	AF535031	AF535036	AF535039	AF535043	EU142154	AF535048
L. catta	AY011225	AY011286	AY011349	AY011412	EU142155	AY011476
M. murinus	EU142143	EU142144	EU142146	1557720828 1551872979	1568929540 1582760635	EU142161
O. garnettii	AF535032	AF535037	AF535040	AF535044	1119599817 1088989074 1078871794	AF535049
A. fusciceps	AY011227	AY011287	AY011351	AY011414	EU142156	AY011477
M. mulatta	AY011228	AY011288	AY011352	AY011415	NW001112559	AY011478
H. sapiens	AYO11231	AY011291	AY011354	AY011418	EU142157	AY011481
T. minor	AY011224	AY011285	AY011348	AY011411	EU142158	AY011475
U. everetti	AF535030	AF535035	AF535038	AF535042	EU142159	AF535047
P. lowii	EU213052	EU142145	EU142147	EU142148	EU142160	EU142162

Table S2 continue

			Accession N	umber		
	BMI1	CNR1	CREM	EDG1	FBN1	PLCB4
Species	325 bp	993 bp	445 bp	978 bp	736 bp	401 bp
T. striatus	AY011516	AY011575	AY011639	AY011702	EU142170	AY011762
C. canadensis	AYO11517	AY011576	AY011640	AY011703	EU142171	AY011763
P. capensis	AY011519	AY011578	AY011642	AY011705	EU142172	AY011765
S. floridanus	AY011529	AY011591	639274633 ^C	AY011716	EU142173	AY011778
O. hyperborea	AY011530	AY011592	AY011655	AY011717	EU142174	AY011779
G. variegatus	AY011531	AY011593	AY011656	AY011718	EU142175	AY011780
C. volans	AF535052	MISSING	AF535058	AF535062	EU213053	AF535065
L. catta	AY011533	AY011595	AY011658	AY011720	EU142176	AY011782
M. murinus	EU142163	EU142165	1546199914	EU142169	1526582216 1558942136	EU142183
0. garnettii	AF535053	AF535056	AF535059	AF535063	EU142177	AF535066
A. fusciceps	AY011535	AY011597	AY011660	AY011721	EU142178	AY011784
M. mulatta	AY011536	AY011598	AY011661	AY011722	EU142179	AY011785
H. sapiens	AY011539	AY011601	AY011664	AY011725	EU142180	AY011788
T. minor	AY011532	AY011594	AY011657	AY011719	EU142181	AY011781
U. everetti	AF535051	EU142166	AF535057	AF535061	EU213054	AF535064
P. lowii	EU142164	EU142167	EU142168	MISSING	EU142182	EU142184

1. Oryctolagus cuniculus used for S. floridanus

			Accession N	Number		
	PNOC	RAG1	RAG2	TTN2&3	TTN6&7	TYR
Species	327 bp	774 bp	444 bp	1219 bp	1691 bp	426 bp
T. striatus	AY011821	AY011879	AY011936	EU142191	EU142206	AY011998
C. canadensis	AY011822	AY011880	AY011937	EU142192	EU142207	AY011999
P. capensis	AY011824	AY011882	AY011939	EU142193	EU142208	AY012000
S. floridanus	AY011835	AY011895	AY011952	EU142194	EU142209	AY012010
O. hyperborea	AY011836	AY011896	AY011953	EU142195	EU142210	AY012011
G. variegatus	AY011837	AY011897	AY011954	EU142196	EU213056	AY012012
C. volans	AF535070	EU142186	AF535076	EU142197	EU142211	AF535081
L. catta	AY011839	AY01898	AY011956	EU142198	EU142212	AY012014
M. murinus	1576058496 1550765351	EU142187	EU142189	EU142199	EU213057	EU142215
O. garnettii	AF535071	AF535074	AF535077	EU142200	1094614950 1097653575 1077056321 1090439925 1108493862	AF535082
A. fusciceps	AY011841	AY011899	AY011958	EU213055	EU213058	AY012015
M. mulatta	AY011842	AY011900	AY011959	EU142201	NW001098160	AY012016
H. sapiens	AY011845	AY011903	AY011962	EU142202	NT005403	AY02019
T. minor	AY011838	MISSING	AY011955	EU142203	EU142213	AY012013
U. everetti	AF535069	MISSING	AF535075	EU142204	EU213059	AF535080
P. lowii	EU142185	EU142188	EU142190	EU142205	EU142214	EU142216

Table S2 continued

Table S3: Nuclear primer sequences used to amplify gene segments from the 14-kb nuclear gene matrix

ADRA2B, 1,219 bp: degenerate F-5'AGCCRATCCAGAAGAAGAACT degenerate R-5'TCACBTTYCTCATCCTYTTCACC CREM, 445 bp: degenerate F-5'AGGAACTCAARGCCCTCAAA degenerate R-5'GGGAGARCAAATGTCTTTCAA *PNOC*, 327 bp: degenerate F-5'GCATCMTDGASTGTGAAGRGMA degenerate R-5'TGCCTCATAAAYTCACTGAAYC *RAG1*, 774 bp: degenerate F-5'AAGACMTCYTGGAAGGCRTGA degenerate R-5'RAAGTTGCCRTTCATYCTCA *TYR*, 426 bp: degenerate F-5'TGTGGCCRGCTHTCAGGSAG degenerate R-5'CTTCATGRGCAAARTCAATGT *BCHE*, 989 bp: F-5'TCAGAGATGTGGAACCCAAA **R-5'ATGCATCACTCCCATCCATT** *FBN1*, 736 bp: F-5'AGACTACCTCAGTGGTGAACTGG R-5'AAGCACCATTACAAACCCTCA degenerate F-5'AGACTACCTCAGTGGTGAAYTGG degenerate R-5'AAGCACCATTAYAAACCCTCA *TTN*2&3, 1,219 bp: F2–5'CACCTCTCTTGTYCTTGAHAATG R2-5'CCTYTTGGAGGATCAGGYTTATC F3-5'GGATGAYGTCACCAGAAACAGTG R3–5'RCCTGGYTCTTTGTAGGGATATT *TTN6&7*, 1,691 bp: F6–5'TGTGATCCTGTVTTCAAACCT R6-5'GCATTRCARACTTTGGATTCAGC F7-5'TTCMCCACCAGGRAAGGT R7-5'TGGYCCAGGYTCTTTAAATGGAT

Table S4. Divergence dates estimated in MULTIDIVTIME (*S13-14*) from a 14-kb concatenated 19 nuclear gene segment sequence matrix with the relaxed clock method. The 95% credibility intervals are given in parentheses. The table shows divergence times estimated with 91 Mya and 65 Mya priors and with each constraint removed under a 91 Mya prior. The node numbers refer to those identified in Fig. S1. Divergence times estimated in (*S17*) are based on a 58.9 kb genomic alignment that is independent from our data set.

				Prior				С	onstraints	(91 Mya prior))	
Node	Steiper & Young 2006		91 Mya		65 Mya	ł	no Scandentia minimum		no Rodentia minimum		no Cercopithecoidea minumum	1
16: Tupaia/Urogale			8.3	(5.4-12.8)	8.2	(5.2-12.8)	8.3	(5.3-12.8)	8.4	(5.3-12.7)	8.2	(5.3-12.7)
17: Scandentia			63.4	(51.9-74.1)	62.2	(51.0-73.6)	63.4	(51.8-74.4)	63.5	(51.9-74.2)	63.0	(51.6-73.8)
18: Hominoidea/Cercopithecoidea	30.5	(26.9-36.4)	26.8	(23.2-32.7)	26.7	(23.2-32.9)	26.8	(23.2-32.8)	26.8	(23.2-32.9)	26.1	(20.9-32.6)
19: Anthropoidea	42.9	(37.3-52.4)	41.7	(36.4-48.6)	41.3	(36.3-48.5)	41.7	(36.5-48.7)	41.7	(36.4-48.6)	41.2	(36.2-48.5)
20: Lemur/Microcebus	40.9	(35.3-51.0)	40.4	(31.7-49.7)	39.8	(31.4-49.0)	40.5	(31.9-49.5)	40.5	(31.9-49.6)	40.1	(31.6-49.0)
21: Strepsirrhini	57.1	(49.4-71.4)	62.1	(51.8-71.5)	60.9	(51.1-70.9)	62.1	(51.8-71.4)	62.0	(51.9-71.4)	61.6	(51.6-71.2)
22: Primates	77.5	(67.1-97.7)	79.6	(66.5-89.5)	77.8	(65.2-89.2)	79.6	(66.6-89.4)	79.6	(66.5-89.4)	79.2	(66.5-89.4)
23: Cynocephalus/Galeopterus			19.8	(14.0-27.2)	19.9	(14.0-27.5)	19.9	(14.2-27.2)	19.9	(14.0-27.0)	19.6	(14.0-27.0)
24: Primatomorpha			86.2	(71.3-97.9)	84.1	(70.0-97.0)	86.2	(71.4-97.6)	86.2	(71.6-97.7)	85.8	(71.4-97.7)
25: Euarchonta			87.9	(72.6-99.9)	85.7	(71.1-98.9)	87.8	(72.7-99.7)	87.9	(73.0-99.7)	87.4	(72.7-99.7)
26: Lagomorpha			50.9	(40.8-60.8)	50.0	(40.2-60.1)	50.9	(41.0-60.5)	50.9	(40.9-60.7)	50.6	(40.8-60.5)
27: Castoridae/Pedetidae			64.6	(52.6-75.5)	63.2	(51.6-74.9)	64.6	(52.6-75.5)	64.6	(52.6-75.6)	64.2	(52.4-75.3)
28: Rodentia			73.3	(60.4-84.4)	71.7	(59.3-83.8)	73.3	(60.4-84.4)	73.3	(60.6-84.5)	72.9	(60.4-84.3)
29: Glires			85.7	(70.7-97.8)	83.5	(69.2-96.8)	85.6	(70.8-97.8)	85.7	(71.0-97.9)	85.2	(70.8-97.5)
30: Euarchontoglires			88.8	(73.2-101.0)	86.5	(71.8-100.0)	88.7	(73.3-100.9)	88.7	(73.6-100.9)	88.3	(73.3-100.8)

		Constraints	(91 Mya prior)							
Node	no Anthropoidea minimum		no Anthropoidea maximum		no Lagomorpha minimum		no Primate minimum		no Primate maximum	
16: Tupaia/Urogale	8.2	(5.3-12.6)	8.4	(5.4-13.0)	8.3	(5.3-12.9)	8.3	(5.3-12.8)	8.8	(5.5-13.9)
17: Scandentia	62.8	(51.1-73.9)	63.6	(51.7-74.4)	63.4	(51.8-74.0)	63.3	(51.6-74.0)	67.5	(52.6-85.6)
18: Hominoidea/Cercopithecoidea	26.6	(23.1-32.6)	27.1	(23.2-34.1)	26.9	(23.2-33.0)	26.8	(23.2-32.8)	27.5	(23.3-33.4)
19: Anthropoidea	41.3	(34.8-48.4)	42.0	(36.5-50.5)	41.7	(36.4-48.8)	41.7	(36.4-48.7)	43.2	(36.6-49.6)
20: Lemur/Microcebus	40.1	(31.1-49.3)	40.7	(31.9-50.1)	40.4	(31.7-49.4)	40.4	(31.7-49.7)	42.8	(32.6-54.9)
21: Strepsirrhini	61.5	(50.7-71.4)	62.3	(51.9-72.0)	62.0	(51.6-71.5)	62.0	(51.6-71.5)	65.8	(52.5-81.2)
22: Primates	79.0	(65.6-89.4)	79.9	(66.6-89.6)	79.6	(66.5-89.5)	79.5	(66.0-89.4)	84.7	(67.2-105.3)
23: Cynocephalus/Galeopterus	19.6	(13.8-26.9)	20.0	(14.1-27.4)	19.9	(14.1-27.2)	19.9	(14.0-27.4)	21.0	(14.5-29.4)
24: Primatomorpha	85.5	(70.6-97.6)	86.4	(71.5-97.9)	86.2	(71.4-97.7)	86.1	(71.0-97.8)	91.8	(72.3-115.1)
25: Euarchonta	87.2	(72.0-99.7)	88.1	(72.7-100.0)	87.8	(72.7-99.9)	87.7	(72.2-99.7)	93.6	(73.4-117.7)
26: Lagomorpha	50.5	(40.3-60.3)	51.0	(40.8-60.8)	50.9	(40.7-60.7)	50.9	(40.7-60.5)	54.2	(41.6-69.5)
27: Castoridae/Pedetidae	64.0	(51.9-75.2)	64.8	(52.7-76.0)	64.6	(52.6-75.5)	64.5	(52.4-75.5)	68.7	(53.2-87.1)
28: Rodentia	72.7	(59.7-84.4)	73.6	(60.4-84.8)	73.3	(60.4-84.5)	73.2	(60.2-84.2)	78.1	(61.2-98.4)
29: Glires	85.0	(70.0-97.6)	85.9	(70.9-97.9)	85.6	(70.9-97.8)	85.5	(70.4-97.7)	91.2	(71.6-114.8)
30: Euarchontoglires	88.0	(72.7-100.8)	88.9	(73.5-101.1)	88.7	(73.4-101.0)	88.6	(72.9-100.8)	94.5	(74.1-119.0)

Table S5 Primers used to amplify and sequence indels informative within Euarchonta. Information provided for indel primers includes the gene in which the indel is present, the human chromosome that the gene occurs on, and the approximate location within the March 2006 genome assembly.

Gene	Position on Human Genome Flanking the Indel	Number of Placental Taxa Examined	Forward Primer	Reverse Primer
N4BP2	chr4 near 39,780,754	33	TCTCTTCTCAGYAGTTCTTYAAA	GCTTGAAAYTGAACCCTTCG
ZNF12	chr7 near 6,698,680	33	TGCATAGCTTCCATCRCTACT	GAGAGAGGTAATGTTCCTRGTAAAA
CDCA5	chr11 near 64,603,721	31	GCCTGACYTTCTTAGACATTTCC	TTTYTTGGARAAAGAAAACAACC
SPBC25	chr2 near 169,454,207	35	GGCATAAATGAATTTTGGAATAA	CCTGCAAATGYTTTRATGGA
SMPD3	chr16 near 66,953,100	33	AGGGTCTTGGAGAGTGAGGA	GCGTRCAGCATGTAGTCGATG
MTUS1	chr8 near 17,557,778	32	GTCACTGCTTCAACCACCTG	TGCGTTTTATACTTCTCWGCTTCTT
SH3RF2	chr5 near 145,373,602	32	CCAAACCTCACTGCAAGACA	CTGGGGTGCTGATTTCTACC
NCOA4	chr10 near 51,254,904	35	ATGGATCTTTCTGATTGG	CATTCAGGCACTTCAGATTGC
TEX2	chr17 near 59,624,835	32	TCCTCTTTTTCTCGGCCAGT	AAGGCTCAGACTGATAAGGAGA
SSH2	chr17 near 24,982,804	36	GATTTCTTGAGTGCGCTCCT	CAAGTGCTACCTCTGCCTCA
ADD2	chr2 near 70,753,563	32	AAGACTTGGAAGGRGAVACC	AAACCGCCCCAGAAGAAC

Figure S1-S11 Indels found to be informative for *a priori* Euarchonta and Primatomorpha hypotheses. Indels supporting Euarchonta are presented first (Figs. S1-S3) with the euarchontan taxa in blue. Indels supporting Primatomorpha follow (Figs. S4-S10), with primatomorphan taxa in green. The indel supporting monophyly of treeshrews+Primates (in orange) is shown in Fig. S11. Taxon designations follow a 6-letter nomenclature: the first 3 letters of the genus followed by the first three letters of the species (Table S1). Sequences with truncated ends were generated by PCR with conserved primers that were placed in the exon flanking the indel. HTGS=high throughput genome sequence. WGS=contig assembly from whole genome shotgun traces

Figure S12. Maximum likelihood tree (-ln L = 56234.7) reconstructed in PAUP* (*S10*) with the final (following removal of ambiguous sites) 13.1-kb concatenated sequence alignment, with a GTR + Γ + I model with the following parameters: Base frequencies, 0.2651, 0.2474, 0.2341, 0.2534; rate matrix, 1.4031, 5.3779, 0.8426, 1.4209, 6.5144; gamma shape parameter, 0.8675; proportion of invariant sites, 0.3549. Numbers used to identify nodes correspond to those in Table S4.

Figure S13. Maximum likelihood bootstrap tree (100 replicates) reconstructed in PAUP* (*S10*) with the 13.1-kb concatenated sequence alignment with *Ptilocercus* removed from the analysis. The maximum likelihood search was conducted under a GTR + Γ + I model with the following parameters: Base frequencies, 0.2668, 0.2422, 0.2343, 0.2567; rate matrix, 1.4071, 5.3038, 0.8410, 1.5736, 6.8836; gamma shape parameter, 0.7440; proportion of invariant sites, 0.3500.

Figure S14. Phylogeny of extinct and extant Euarchonta on the basis of the morphological character matrix of (*S18*). Shown is the strict consensus tree of 3 equally parsimonious trees, with all but four characters unordered (following *S18*), constrained to fit the Primatomorpha hypothesis (Scandentia(Dermoptera+Primates)). Bootstrap values >50% are shown above each branch. These results are consistent with a similar analysis reported in the Supplementary Information of (*S18*).

Figs. S1-S3: *Indels Supporting Euarchonta* (euarchontan taxa in blue)

Fig. S1. Gene N4BP2

homSap	KELLESECVEAQFSEAPVDLDASEPQACLNLPGLDLPGTGGDQKSTRVSDVFLP
panTro	KELLESECVEAQFSEAPVDLDASEPQACLNLPGLDLPGTGGDQKSTRVSDVFLP
ponPyg	KELLESECVEAQFSEAPVDLDASEPQACLNLPGLDLPGTGGDQKSTRVSDVFLP
macMul	KELLESECVEAQFSEAPVDLDASEPQASLNLPGLDLPGTGGDQKSTRVSDVFLP
calJac	KELLDSECVEALFSRAPVDLDASEPQASLNPPGLDLPGMGGDQKSTPVSDMFLP
tarSyr	KEPLESECAKAQFSQSPVDLDAHEPQASSNLPEFDSPDSEGDQKSASVSDEFVP
otoGar	KEVLESECIAVQLPQASVNLDAREPQPPSSFPGLDLPSTGGDQKSS-VSDVFVP
micMur	KELLESECAEAQFPQASVHLDASEPQAPLSLPGLDLPGTGGDQKSTFVSDVFVP
cynVol	KELLESECVEAQFSQAPADLDASEPQALLNLPELDLPDTGGDQKSTSVSDVFVP
tupBel	.ELLEPERTEAQSSQGPVDLGASEPQAPSNLPGLDSAGTGGDRGSPAAADVSVP
ptiLow	KELLESECIEAQFPLAPIDLDASEPQAPLNLPGLDLPGTGGDQD-SSVSDVFVP
musMus	KDLSESECPSAQHSQALADLGNSDPQAPSTHPLHNSGSDLPGTDGDQKSASAPDVFVP
ratNor	${\sf KDHLESECPSVQHSQALVSVGNSEPQVPSNRSLHNSGSDLPSTDGDQKSTSAPDVFVP}$
dip0rd	${\tt KEGLEAECVDNQLSQPSVDMEANEPQAPSTLPVQNLGLDLPGTSGDQKSTSASDVFVP}$
speTri	.ELLESEHVEAQLSEAPVNLNANEPQASLNLPVQNSGCDLPDTGGNQRSTSVSDIFVP
cavPor	KVLLDSNCVETQLSPAPVDLDANVPQGPLNLTVQNPELDLAGTGEGQKSVSISGVFVP
oryCun	.ELLESECVETQFCQTLLESDANELKAPLNLPVQNPGLDIPGTGGDQKPTSVSDVFV.
ochPri	NELLQSEC-ETQFSQNPEKFDASEPQPTLNLPVQNSGPNIPGTGGDQKSTPVSDVF
canFam	KELLESECVETPFSQAPVDLDASEPQAPLSLTAQNLGLDLLGTSGDQKSASVPDAFVP
felCat	KELLETEYVETPFSQAPVDLDDSEPQA-LSLTVQNLGLDY1VQGGDQKSASVPDMFVP
equCab	KELLESECLQAQFSQAPVDLDVSESQAPLNLTVENPGLGLLGRGENQKSTSVPDMFVP
myoLuc	.DLLESECAETQFSQAPVDLDANEPQAPSNSTVQNPGLGLLGKGGNQKSTSIPDVFVP
pteVam	NELLESECVEAQFSETPVDLDANEPQAPLNVQNPGLGLLGIGGDQKSTSIPDVFVP
turTru	KELLESVCVETQFSQAPVDLDANELQAPLNLTVQNLGLGLLGTDGDQKS-SVPDVFVP
bosTau	KELSESECVKTQFSQAPVDLDANELQAPLNLAVQNPGIGLIGTGGDQKSTSVPDVFVP
susScr	RELLESECVETQFSQAPVDSDASELQAPLNLTVQNPGLGLLGTGGDQKSTSVSDVFVP
sorAra	KECSESESAEAQFSQDPGHLDIHEPQA-LNLPVQNPGVGLQDAGGDQSSTSASDVFVP
eriEur	.ELVESECVEAQFSEDPVDLDANDSSLNLAVQNSGLDLLGAGSDQIPTSVPDVFVP
dasNov	.ELLESECIEAQLFQVPVDMDTNELQAPLNLSAQNPGLDLLDIDGDQKTASASDVFVP
choHof	KELLESECTEAQFFQVPVDLDASEPQSPLNLSAQNPGLDLLAADGDQKSISVPDVFVP
loxAfr	EELLESECVQTQFSQAPVDLDANEPQPPLNLSVQNPELDLLVTDGDQKSTPVPNVLVP
proCap	${\tt EDLAESECVETHFSEAPVDLDASEPQIPLNIFVENPELDSVHTFGDQRCTSASDVLAP}$
echTel	${\tt ILKKRCEYVETQFSQALVDLDANEFQVP1NLSPQVPDLGLLGKGGDQKSTSAPGMFVP}$

Fig. S2 Gene ZNF12

homSap	NVPGKTFDVETNPVPSRKIAYKNSLCDSCEKCLTSVS
panTro	NVPGKTFDVETNPVPSRKIAYKNSLCDSCEKCLTSVS
ponPyg	NVPGKTFDVETNPVPSRKIAYKNSLCDSCEKCLTSVS
macMul	NVPRKTFDVETNAVPSGKTAYRNSLCDSCEKCLASVS
calJac	NVPGKTFDVETNPVPSRKTSYKNSLCDSCEKCLTSVS
tarSyr	NVPGKPFTVETNLDPSRKIAHKNSLCDSCEKSLTSVS
otoGar	NVPSKIFNVEMNSIPLRKTAYKNSLCGSCEKSLTSIS
micMur	NVPGKIFNVETNPVSSRKIAYKNSLCDSCEKSLTSIS
galVar	VNPVPSRKIAYKSSLCDSCEKSLTSIS
cynVol	FKVEVNPVPSRKIACKSSLCNSCEKSLTSIS
uroEve	SNVEMNLVPSRKIAYQNSLCDSCEKTLTSVS
tupBel	NVPGKTSNVETNSVPSRKIAFQNSLCDSCEKTLTSVS
ptiLow	FNVEMNPVPSRKIAYQNSLCDSCGKNLTSVS
musMus	DASSKATDGETKPFPSQKALPQCNSCEKSLMCVS
ratNor	DASRMAAEVAKKLAPSGKVLPKCSSCEESLMCVS
dip0rd	SVSGKAFSVEKNLVP-RKIASKCDLCEKSLACVP
speTri	NVSGKAFNVEINPVPSRKVASKCDLCEKSLTSVS
cavPor	NVSEKAFSVEMSPVASRKISSRCDACEKSLTSVS
oryCun	NGLGKTLNLDTNPVSSRKTPCQYDSSGMNLKYIS
canFam	NVLGKTFNVETNPIPSRKMSYKCDSCEKSLKSVS
felCat	NVLGKTLNVETNPIPSRKISYKCGSCEKSLKSIS
equCab	HVPGKTFNVETNPVPSRKMSYKCDSCGKSLKSVS
myoLuc	DVLGKTFNVETNPVPSRKTSYKCDSCEKSLKSTS
pteVam	NVLSKTFNVETNPVLSRKISYKCDSCEKSVKSI.
turTru	NVFGKTFNVETNPVPSRKISCKCDSCGKSLKSTS
bosTau	NGLGKTCNVETSPVSSRKISYQCDSCEKSLKSIS
sorAra	NVPSKTFSIETNSAPSRKMPCKCNACGKSCKPAS
eriEur	NDLGKTFHVESNPVPSNTVSYKCGSCEKNVKAAS
dasNov	NALGKTFNVETNPVPSRQIFSKCDSCEKSLKSIS
choHof	NALGKTFEVETNPVSPRKISSKCDSCGTSLKSIS
loxAfr	NILDKTLNVESSPDLSRKISYKCDSCEKNLKSIS
proCap	NVPDKTFNVETSPDPSRNISYTCDSCEKSLKSIS
echTel	NVLGKTFSVETSPDSSGKILHKCDSCEKSLASIS

Fig. S3. Gene CDCA5

Fig. S3	Gene <i>CDCA5</i>
homSap	SFFLEKENEPPGRELTKEDLFKTHSVPATPTSTPVPN-PEAESSSKEG-ELDARDLEMSKK
panTro	SFFLEKENEPPGRELTKEDLFKTHSVPATPTSTPVPN-PEAESSSKEG-ELDTRDLEMSKK
gorGor	SFFLEKENEPPGRELTKEDLFKTHSVPATPTSTPVPN-PEAESSSKEG-ELDARDLEMSKK
macMul	AFFLEKENEPPGRELTKEDLFKTHIIPATPTTTPVPN-PDAESSSTEG-ELDARDLEMSKK
calJac	AFFLEKENKPPCRELTKEDLSKIHSVPDTPNTSPVLN-PEAESSSKER-ELDARDLEMFKK
tarSyr	AFYLEKENNPPIREPTKEDLLKTCDVPATPASTPVHI-LNAKSSSKDG-ELDARDLEMSKK
otoGar	SFLLEKENNPPNKEPTKEECFKIHPSPVTPATPTTTPVQN-LNSDFDSGEG-DLDARDLEMSKK
micMur	SFFLEKENNPPNREPTKEDLFKIHSVPGTPATTPVHS-LSAESNSSEG-SLDARDVEMSKK
galVar	PRKELTKEDLFKTCSIPVTPATTPVHN-LNIKSSSKEG-DPDARD
cynVol	PRKEPTKEDLFKTCSIPVTPATTPVHN-LNIKSNSKEG-DPDARD
uroEve	PSSEPTKEDFFKICSVPVTPTTTPVFT-QNTEPNSSEG-DLDARD
tupBel	AFSLEKENNPPSSEPTKEDFFKICSVPVTPTTTPVFT-QNTEPNSSEG-DLDARDLEMSKK
musMus	SFILEKENNPPLKVPTKEDLFKTCSVPGTPSSTPVLYTQNVEPDSGEA-ELDSRDLEMSQK
ratNor	SFILEKENNPPLKVPTKEDLFKTCSVPGTPSSTPVLCAQNVKSNSREV-EPDTRDLEMSQK
dip0rd	AFFLEKENNPPCQETTKEDLFNPVPMTPTTTPVLTTLNVIRSVHQQ-EVDARDMEMSKK
cavPor	TFFLGKENNPPLQKPTKRDLFKTPSVPVTPTTTPVLDPPEVESCSKEE-ELDIRTVEMSRK
oryCun	AFFLEKENNPPKREPAREELFKSCSVPGTPATTPVLCSLNTSSNAKEG-QLDARDLEMSQK
ochPri	AFLLEKENNPPQREPAREDLFKSCSVPTTPTTTPVLCPPSAKSTSRDG-ELDARDLEMSQK
canFam	AFFLEKENNPPTKEPAREDLFKSCSIPVTPTTTPVLYPVNVESNSREE-DLDARDLEMSKK
felCat	LFFLE-ENKPSSKKPAREDLFKTCSIPGTPTATPVLYPLNVESNSRKE-DLDARNLEMSNK
equCab	AFFLEKENHLPSKEPTKEDLFKTCSVPSTPTTTPVLQPLNVESNSGEDLDTRDLEMSKK
myoLuc	AFSLEKENNPPTKEPAKEDLFKQCSVPATPVQSPDESNATEG-DLDTRDLEMSKK
turTru	FLEKENNPPSKEPTREDIFPTRSVRVTSASTPALCSLNVESDSREG-DLDARDLEMSKK
bosTau	LEKENNPPSKKLTKEDLFHTCSVPVTAPSTPVLCPVNAESNSWKG-DLDARDLEMSKK
susScr	AFFLEKENNPPSKEPTREDLFQTRSVPVTPTPTPVLCSLNVESNSGEG-DLDARDLEMSKK
sorAra	LEKENCPPGPEPTWEDLFKPCEAPGTPASAPLVPPLSADPATSAS-ALDLRDLEMSKK
eriEur	AFFLEKENKPPYKELTRGDLFKTRDVPVTPASSPVPNAPSSADPNSGYREPDARDLEMSRK
dasNo∨	AFFLEKGNNPPRKETTKEDLFQTSSVPVTTATTPVLYPLEVKSNSKKG-HPDPRDLEMSTK
choHof	AFFLEKENNPPIKEPTKEDLFKTCSVPITPATTPVLNSLKVESSSKEG-HLDARDLEMSKK
loxAfr	AFLLEKENKPPSKELTKEDLFKTCSTPVTPSTTPVLLPLTVESSPRSG-DLDTRDLEMSKK
proCap	AFLLEKENNPPSKELTKADLFKTHPTPVTPASSPVLVPLNIESRSRSG-DLDPRDLEMSKK

Figs. S4-S10 Indels Supporting Primatomorpha (primatomorphan taxa in green)

Fig. S4 Gene SPBC25

homSap	MVEDELALFDKSINEFWNKFKSTDTSCQMAGLRDTYKDSIKAFA
panTro	MVEDELALFDKSINEFWNKFKSTDTSCQMAGLRDTYKDSIKAFA
ponPyg	MVEDELALFDKSINEFWNKFKSTDTSCQMAGLRDTYKDSIKAFA
macMul	MVEDELALFDKSINEFWNKFKSTDTSCQMAGLRDTYKDSIKAFA
calJac	MVEDELALFDKSLNEFWNKFKSTDTTFQMAGLRDTYKDSLKAFA
tarSyr	MVEDELTLFDKSINEFWNKFKSTDTANQMMGLRDTYKDSVKAFA
otoGar	MVEDQLALLDKNINEFWNKFKSTDTAGQMAGLRDTYKDSIKTFA
micMur	MVEDELVLFDKTVNEFWNKFKSTDTSCHMVGLRDTYKDSLKAFA
galVar	FTSTDTDCQMMGLR
cynVol	FTSTDTSCQMMGLRGTNK
tupBel	MVEDELALFDKGINEFWNKFRSTVSDTSCQMVGLRDAYKDSIKAFA
uroEve	FRSTVSDTSCQMVGLRDAYK
musMus	MGEDELALLNQSINEFGDKFRNRLDDNHSQVLGLRDAFKDSMKAFS
ratNor	MGEDELAAFEKSINEFGDKFRYRLSDNRSQVLGLKDAFKDSIRALS
cavPor	MVEDELALFDKSINEFGNKFRNTLSDTPCQMLGLRDACKDSIKTLA
speTri	MMEDELARFDKSINEFGNKFRNTFSDTRCQMVGLRDVFKDSIEALA
dip0rd	MVEDELAHFDKSISEFGSKFRNTLSDTPSQTVGLRDAYKDSIKALS
oryCun	MVEDELALFDKSINEFGSKFRSTLSDAPCQMVGLRDAYKDSVKSLT
ochPri	MVEDELALFDKSINEFGSKFRSTLSDTPCQMVGLREACKDSVRLLT
canFam	MIDDELAQFDKSISEFWSKFKGTVSDTSSQMVGLRETYKDSIKACA
felCat	MIEDELALFDKSINEFWNKFKSTLSDTSCQMMGLRDTYKDSIKALT
equCab	MVEDELALFDKSINEFWNKFKNTVSDTSCQMVGLRDAYKDSIKAFA
myoLuc	MVEDELALLDKNINEFWNKFKSNVNDTSCQMVGLRDNYKDISKAFT
pteVam	MVEDELALLDKSINEFWNKFKSSVSDTSCQMMALRDSYKDINKAFT
bosTau	MVEDELALFDKSINEFWNKFKSTVSDTSCQMVGLRETYKDSIKAFA
turTru	MVEDELALFDKSINEFWNKFRSTVSDTSCQMVGLRDTYKDSIKAFA
susScr	MVEDELALFDKSINEFWNRFKSTVSDTSCQMVGLRENYKDSLKAFA
oviAri	MVEDELALFDKSLNEFWNKFKSTVNDTSCQMVGLREAYKDSIKAFA
eriEur	MVEDELALFDKSINEFWNKFKGTVSDTSFQMVGLRDTYKDSIKIFT
sorAra	MVEDELVLFEKSINEFVNEFESTASDTTCQVVGPRDADKDSIKALA
dasNo∨	MIEDELALFDKSINEFWNKFKGTVSDNSCQMVGLRDTYKDSIKAFA
choHof	MIEDELALFDKSINEFWNKFKSAVSDTSCQMVGLRDTYKDSIKAFA
loxAfr	MIEDELVQFDKSINEFWNKFINTASDTSCQMVGLRDAYKDSMKAFA
proCap	MIEDELRQFDKSINEFWNKFINTTSDTSCQMAGLRDAYKDSMKAFA
echTel	MIEDELLQFDKSMNEFRNKHFNTLNDTSGQMMGLRDTYRDSMKAFA

Fig. S5. Gene SMPD3

homSap	VLESEEGRREYLAFPTSKSSGQKGRKELLKGNGRRIDYMLHAEEGLCPDWKA
panTro	VLESEEGRREYLAFPTSKSSGQKGRKELLKGNGRRIDYMLHAEEGLCPDWKA
ponPyg	VLESEEGRREYLAFPTSKSSGQKGRKELLKGNGRRIDYMLHAEEGLCPDCNA
macMul	VLESEEGRREYLAFPTSKSSGQKGRKELLKGNGRRIDYMLHAEEGLCPDWKA
calJac	VLESEEGRREYLAFPTSKSSGQKGRKELLKGNGRRIDYMLHAEEGLCPDWKA
otoGar	VLESEEGRKEYLAFPTSKSPGQKGRKDLLKGNGRRIDYMLHAEEGLCPDWKA
micMur	VLESEEGRREYLAFPTSKSPGQKGRKDLLKGNGRRIDYMLHAEEGLCPDWKA
galVar	GRREYLAFPTSKSPGQKGRKDLDKGNGR
cynVol	GRREYLAFPTSKSPGQKGRKDLLKGNGR
tupBel	VLESEEGRREYLAFPTSKSPGAGQKGRKDLLKGNGRRIDYMLYAEEGLCPDWKA
uroEve	GRREYLAFPTSKSPGAGQKGRKDLLKGNGR
ptiLow	GRREYLAFPTSKSPGSGQKGRKDLLKGNGR
oryCun	VLESEERRREYLACPISKSQGGCQYGRKDLLKGSGRPLDNMLHAEDGLGPDWKA
ochPri	VLESEEGRREYLAFPTSKSPGGGQKGRKDLLKGNGRRIDYMLHAEDGLCPDWKA
cavPor	VLESEEGRREYLAFPTSKSPGGGQKGRKDLLKGNGRRIDYMLHAEEGLCPDWKA
speTri	VLESEEGRREYLAFPTSKSSGSGQKGRKDLLKGNGRRIDYMLHAEEGLCPDWKA
dip0rd	VLESEEGRREYLAFPTSKSPGPDQKGRKDLLKGNGRRIDYMLHAEEGLCPDWKA
musMus	VLESEEGRREYLAFPTSKSPGAGQKGRKDLLKGNGRRIDYMLHAEEGLCPDWKA
ratNor	VLESEEGRREYLAFPTSKSPGAGQKGRKDLLKGNGRRIDYMLHAEEGLCPDWKA
canFam	VLESEEGRREYLAFPTSKSPGAGQKGRKDLLKGNGRRIDYILYAEEGLWPDWKA
felCat	VLETEEGRREYLAFPTSKSPGAGQKGRKDLLKGNGRRIDYMLYAEEGLCPDWKA
equCab	VLESEEGRREYLAFPTSKSAGAGQKGRKDLLKGNGRRIDYMLYTEEGLCLDWKA
myoLuc	VLESEEGRREYLAFPTSKNSGAGQKGRKDVLKGNGRRIDYMLYAEEGLCPDWKA
pteVam	VLESEEGRREYLAFPASKSPGACQKGRKDVLKGNGRRIDYMLYAEEGLCLDWKA
bosTau	VLESEEGRREYLAFPTSKSPGGGQKGRKELLKGNGRRIDYMLHGEEGLYPDWKA
oviAri	VLESEEGRREYLAFPTSKSPGGGQKGRKELLKGNGRRIDYMLHGEEGLCPDWKA
turTru	VLESEEGRREYLAFPSSKSPGGGQKGRKELLKGNGRRIDYMLHGEEGLCPDWKA
susScr	VLESEEGRREYLAFPTSKSPGGGQKGRKDLLKGNGRRIDYMLHGEEGLCPDWKA
eriEur	ILESEEGRREYLAYPTSKSSGGGQKGRKDLLKGNGRRIDYLLHAEEGLAPDWKA
sorAra	VLESEEGRREYLAFPSSKSPGGCQKGRKDLLKGNGRRIDYLLHAEEGLGPDCKA
dasNo∨	${\tt VLESEEGRREYLAFPTSKSPGAGQKGRKDLLKGNGRRIDYMLFTEEGLCPDWKa}$
loxAfr	VLESEEGRKEYLAFPTSKSSGAGQKGRKDLLKGNGRRIDYILHGEEGLGPDWKA
proCap	${\tt VLENEEGRREYLVFSTSKSSGAGQKGRKGLLKGNGRRIDYILHGEEGLGPDWNA}$

Fig. S6. Gene MTUS1

homSap	VTASTTCEKLEKARNELQTVYEAFVQQHQAEKTERENRLKEFYTREYEKLRDTYIEEAEKYKMQLQEQ
panTro	VTASTTCEKLEKARNELQTAYEAFVQQHQAEKTERENRLKEFYTREYEKLRDTYIEEAEKYKMQLQEQ
ponPyg	VTASTTCEKLEEARNELQTAYEAFVQQHQAEKTERENRLKEFYTREYEKLRDTYIEEAEKYKMQLQEQ
macMul	VTASTTCEKLEKARNELQTAYEAFVQQHQAEKTERENRLKEFYTREYEKLRDTYIEEAEKYKMQLQEQ
calJac	VTASTTCEKLEKARNELQISYEEFVQQHQAEKTERENRLKEFYTREYEKLRDTYIEEAEKYKMQLQEQ
tarSyr	VTASATCEKLEKARNELQTAYEGFVQQHQAEKTERENRLKEFYTREYEKLQNTYIEEAEKYKVQLQEQ
otoGar	VTASTTCEKLEKSRNELQLAYEGFVRQHQADRTERENQLKEFYTREYEKLRDTYVEEAEKYKTQLQEQ
micMur	DSASTTCEELEKAKNELETAYEGFVQQHQADKTERENRLKEFYTREYEKLRDAYIEEAEKYKTQLQEQ
galVar	EKARNELQIAYEGFVQQHRADKIERENQLKEFYTREFEKLQSTYI
cynVol	EKAKDELQIAYEGFVQQHRADKIERENQLKEFYTREFEKLQSTYI
tupBel	VTASTTCDKLQKAKDELQIAYEGFVQKLNQQHQADLSELENRLKEFYTGECEKLQNIYIEEAEKYKTQPQEQ
ureEve	AKDELQIAYEGFVQKLNQQHQADLSELENRLKDFYTEECEKLQNMYI
oryCun	ATASTTCEKLEKARNELQIAYESVVQKLNQQHQTDRTELESRLKEFYTKECEKLQNIYIEEAEKYKTQKQEQ
ochPri	ATASTTCEKLEKARSELQIAYESFVQKLKQQHQTDRTELEDRLKEFYTKECEKLQSIYIEEAEKYKSQLQEQ
cavPor	VAASTTCEKLEKARNELQTAYEAFVQKLNQQHQTDQTELESRLKEFYTGECEKLQNIYIEEAEKYKAQLQEQ
speTri	VAASTTCEKLEKARNELQTAYEGFVQKLNQQHQTDQAELENRLKEFYTGECEKLQNIYIEEAEKYKIQLQEQ
dipOrd	VAASNTCEKLEIARNELQTAYEGFVQKLNQQHQTDRTELENRLKEFYTGECEKLQNIYIEEAEKYKTQLQEQ
musMus	VAASSACEKLEKARTDLQTAYQEFVQKLNQQHQTDRTELENRLKDLYTAECEKLQSIYIEEAEKYKTQLQEQ
ratNor	VAASSTCEKLEKARNDLQTAYEGFVQKLNQQHQTDQTELENRLKEFYTAECEKLQSIYIEEAEKYKTQLQEQ
canFam	VTASSTCEKLEKAKNELQIAYEGFVQKLNQQHQTDLSELENRLKEFYTGECEKFQNIYIEEAEKYKTQLQEQ
felCat	VTASSTCEKLEKARNELQIAYEGFVQKLNQQHQTDLTELENRLKEFYTGECEKLQNIYVEEAEKYKNQLQEQ
equCab	VTASTTCEKLEKARNELQIAYEGFVQKLNQQHQTDLTELENRLKEFYTGECEKLQNIYIEEAEKYQSQLQEQ
myoLuc	VTASTACEKLEKARNELQAAYEGFVQKLNQQHQTDLTELENRLKEFYTEECEKLQNIYIEEAEKYKTQLQEQ
pteVam	VTASTTCEKLEKARNELQIAYEGFVQKLNQQHQTDLTELESRLKEFYTGECEKLQNIYIEEAEKYKTQLQEQ
bosTau	VTVSTTCEKLEKARNELQIAYEGFVQKLNQQHQTDLTELENRLKEFYTGECEKLQNIYIEEAEKYKTQLQEQ
turTru	VTASTTCEKLEKARNELQIAYEGFVQKLNQQHQTDLTELENRLKEFYTGECEKLQNIYIEEAEKYKTQLQEQ
susScr	VTASTTCEKLEKARNELQIAYEGFVQKLNQQHQTDLTELENRLKEFYTGECEKLQNIYIEEAEKYKTQLQEQ
eriEur	ATASTTCEKLEKARNELQLAYEGFVQKLNQQHQTDLTELENRLKEFYTRECEKLQDIYIKEAENYKTQLQEQ
sorAra	VTASTTCEKLEKARNELQITYEGFVQKLNQQHQTDLTELENRLKEFYTGECEKLQNIYIEEAEKYKTQLQEQ
choHof	VTASTTCEKLEKARNELQIAYEGFVQKLNQQHQTDITELENRLKEFYTGECEKLQNIYIEEAEKYKTQLQEQ
loxAfr	VTASSTCEKLEKARNELQIAYEGFVQKLNQQHQTDLTELENRLKEFYTEECEKLQNIYIEEAEKYKTQLQEQ
proCap	VTASTTCEKLEKARSELQLAYEGFVQKLNQQHQTDLTELENRLKEFYTGECEKLQHIYIEEAEKYKMQLQEQ

Fig. S7. Gene SH3RF2

homSap	SRTKNLSLVSSSSRGNTSTL-RRGPGSRRK
panTro	SRTKNLSLVSSSSRGNTSTL-RRGPGSRRK
gorGor	SRTKNLSLVSSSSRGNTSTL-RRGPGSRRK
macMul	SRTKNLSLVSSSSRGNTSTL-RRGPGSRRK
calJac	SNTKNLSLVSSSSRGNTPTL-RRGPGSRRK
tarSyr	TKNLSLVFSSSRGHTPTF-*RGPGSKRK
otoGar	SRTKNLSLASSSSRGNTPTI-RRGPGSRRK
galVar	SCTKNLSLVSSSSRGNTPTL-RRGPGSRRK
cynVol	SCTKNLSLVSSSSRGNTPTL-RRGPASRRK
uroEve	SHSKSLSLVPSPSRGKATNIPTL-RRGPGSRRK
tupBel	SHSKSLSLVPSPSRGKATNIPTL-RRGPGSRRK
ptiLow	SHTKSLSLVSS-SRGKVTNTPTL-RRGPGSRRK
musMus	SRTRHLSLMSSPSRGKATNTSSL-RKSPGSRRK
ratNor	SRTKHLSLMSSPSRGKATNTSTL-RKSPGSRRK
cavPor	SCTKTLSLASSSPRSKTANTPTL-RRVPGSRRK
oryCun	SHNKSLSLMSSPSRGKATSTPTL-RRGPGSRRK
ochPri	SRNKSLSLVSSSFRGKPTSTPTL-RRGPGSRRK
canFam	ARTKTLSLVPSSSRGKANNTPTL-RRGPGSRRK
felCat	VRTKNLSLVPSCSRSKAANTPTL-RRGPGSRRK
equCab	SRTKNLSLVASPSRGKAVNTPTL-RRGPGSRRK
myoLuc	SRTKSLSLVSS-SRGKATNTPSL-RRGPGSRRK
pteVam	SCTKSMSLVSSSSRGKAANTPTL-RRGPGSRRK
turTru	SHTKGMSLVSS-SRGKATNAPTL-RRGPGSRRK
bosTau	SRTKNLSLVSSPSRGKATSTPTL-RRGPGSRRK
susScr	TKSLSLVPSPARGKATHAPAL-RRGQGSGRK
sorAra	TKSLSLMSPSSRGKETSMATL-RRGPGFRRK
eriEur	.HPKASPWCPHPPRGKETNTPTL-RRGLGS
dasNo∨	SHTKSLPLASSSSRGKATNSPTL-RRGPGSRRK
choHof	SRTKSLSLGSSFSRGKATNSPTL-RRGPGSRRK
loxAfr	PHKKTLPLGPSSPRGKAINSPVL-RRGPGSRRK
proCap	SHTKNPSLRSSSPRGKATNWPAL-RRGPGSRRK
echTel	SRTKTLSLESPSPRGKATNSPTLQKRGPGSRRK

homSap	PENGSRET-SEKFKLLFQSYNVNDWLVKTDSCTNCQGNQPKGVEIE
panTro	PENGSRET-SEKFKLLFQSYNVNDWLVKTDSCTNCQGNQPKGVEIE
gorGor	PENGSRET-SEKFKLLFQSYSVSDWLVKPDSCTNCRGNQPKGVEIE
ponPyg	PENGSRET-SEKFKLLFQSYSVSDWLVKPDSCTNCRGNQPKGVEIE
macMul	PENDSRET-SEKFKLLFQSYNVNDWLVKTDSCTNCQGNQPKGVEIE
calJac	PENGSHEI-SEKFKLLFQSYNVNDWLVKTDSCTNCQGNQPKGVEIE
tarSyr	PENGSRET-REKFKLFFQSYSVSDWLVKPDSCTNCRGNQPKGVEIE
otoGar	PENDSHEA-SEKYKLLFQSYSVSDWLVKPDSCTNCRGNQPKGVEIE
micMur	LENGSCET-SEKFKIFFQSYSVSDWLVKPDSCTNCRGNQPKGVEIE
galVar	PENGSHEP-SEKFKHLFQSFNVSDWLLKPDSCTNCQGSQPKGVEIE
cynVol	PENGSHEP-SEKFKHLFQSFNVSDWLLKPDSCTNCQGSQPKGVEIE
uroEve	PENGSCET-SDKFKLLFQAFQESYSVNDWLVKPDSCTNCQGNQPKGVEIE
tupBel	PENGSCET-SDKFKLLFQAFQESYSVNDWLVKPDSCTNCQGNQPRGVEIE
musMus	PVDGSWET-SEKFKLLFQVFREPYNVSDWLVKPDSCTNCQGNQPRGVEIE
ratNor	PVNGRSDT-SDKFKLLFQVFREPYNVNDWLVKPDSCTNCQGNQPRGVEIE
dip0rd	PENGSHET-SEKIKLLFQVFQEPYSVNDWLVKPDSCTNCQGNQPKGVEIE
cavPor	PESSSWEA-SEKAKRLVQVFQQPYSVNDWLAKPDSCSNCGGNQPKGVEIE
oryCun	PESSSWEA-SEKAKRLVQVFQQPYSVNDWLAKPDSCSNCGGNQPKGVEIE
ochPri	PENGSCEA-SEKLKLLFQAFQEPYSVSDWLAKPDSCTNCGGNQPKGVEIE
canFam	PGNGSCET-SGKFKLLLQVFQEPYSVNDWLVKPDSCTNCRGNQPKGVEIE
felCat	PGKGSCEA-SEKFKLLFQVFQEPYSVSDWLLKPDSCTNCRGNQPKGVEIE
equCab	SRNDSCDT-SEKFKLLFQVFQESYNVNDWLAKPDSCTSCQGNQPKGVEIE
myoLuc	PGNGSCET-SEKFKRLFQVFHESYNVNDWLVKSDSCTNCQGNQPKGVEIE
pteVam	PGNGSCET-TEKFKLLFQVFQESYSVNDWLFKPDSCTNCRGNQPKGVEIE
turTru	PGNGSCET-SEKFKLLFQVFQESYGVNDWLIKPDSCTSCQGKQPKGVEIE
bosTau	PENGGCETTSEKFKLLFQVFHESYNVNDWLVKSDSCTYCQGNQPKGVEIE
oviAri	PENGGCETTSEKFKLLFQVFQESYNVNDWLVRSDSCTCCQGNQPKGVEIE
susScr	PRNGSYET-SEKFKLLFQVFQESYSVNDWLVKPDSCTSCQGNQPKGVEIE
sorAra	PGSSSCET-SEKFKSLFQVFQESYNVNDWLVKPDSCTNCQGSLPKGVEIE
eriEur	PGNGSYET-PEKFKSLFQVFQEPYNVSDWLVKSDSCTNCQGNQPKGVEIE
dasNo∨	PENGSCET-SEKLKLLFQVFQESYNVSDWLVKPDSCTNVR-QQPKGVEIE
choHof	SGSCET-SEKFKLLFQIFQESYSVSDWLVKPDSCSSCQGNQPKGVEIE
loxAfr	NGSCET-NEKFKLLFQVFQESYNVSDWLVKPSSCTNCQGNQPKGVEIE
proCap	NGSCET-SEKFKLLFQVFQESYNVNDWLVKPDSCTICQGNQPKGVEIE
echTel	NGSCET-SGKSQSWFQVFQEPFNISDWLVKPDSCINCQGIQPKAMEIE

Fig. S9. Gene TEX2

homSap	MSKAQTDKETSEEKPPAEGSEDPKKPPRPQEGTRSSQRDQILYLFGR
panTro	MSKAQTDKETSEEKPPAEGSEDPKKPPRPQEGTRSSQRDQILYLFGR
ponPyg	MSKAQTDKETSEEKPPAEGSEDPKKPPRPQEGTRSSQRDQILY
macMul	MSKAQTDKETSEEKPPAEGSEDPKKPPRPQEGTRSTQRDQILYLFGR
calJac	MSKAQTDKETSEEKPSAEGSEDPKKPPRPQEGTRSSQRDQILYLFGR
tarSyr	MSKAQ-DKETSEEKPPPEGSEDPQKPPPPQEGTRSGQREQILYLFGR
otoGar	MSKAQTDKETLEEKLPAEGSEDPKKPPHPQEGTRSGQRDQILYLFGR
micMur	MSKAQTDKETLEEKLPVEGSEDPKKPPHPQEGARSGQRDQILYLFGR
cynVol	VEEKLPAEGSEDPKKPPVPQEGTRYGQRDQILYLFGR
uroEve	SEDKQPAEREQGSEDPKKPPHSQEGTRSGPRDQILYLFGR
tupBel	MAKAQTDKETSEDKPPAERELGSEDPKKPPHSQEGTRSGPRDQILYLFGR
ptiLow	SEEKPPAEREPGSEDPKKPPHSQEG-RSGQRDQILYLFGR
musMus	MSKAQSDKEATEEKPPPEKELPSEDLKKPPQPQEGTKSSQRDPILYLFGR
ratNor	MSKAQSDKEATEEKPPPEKELPSEDLKKPPQPQEGTKSSQRDPILYLFGR
dip0rd	MAKAQTDKETSEDKPPAERELGSEDPKKPPHSQEGTRSGPRDQILYLFGR
cavPor	MSKAQADKETSEEKPPAEKELGSEDPKKPSHPQEGTRSVHRDQILYLFGR
oryCun	MSKAQTDKETSEEKPPAERELASEDPKKPPQPQEGTRAGQRDQILYLFGR
ochPri	MSKAQTDKETCEEKPAAERELANEDPKKPLQPPEGTRAGQRDQILYLFGR
canFam	MSKAQTDKETSEEKPPAERELGGEDPKKPPHPQEGTRSGQRDQILYLFGR
felCat	${\tt MSKAQTDKETSEEKPPAERELGGEDPKKPPHPQEGTRSGQRDQILYLFGR}$
equCab	${\tt MSKAQSDKETSEEKPPTEKEQGVEDPKKPSPPQEGTRSSQRDQILYLFGR}$
myoLuc	${\tt MSKAQTDKETSEEKPPAERDLGVEDPKKPPHPQEGTRSGQRDQILYLFGR}$
pteVam	MSKAQTDKETSEEKLPAEREVGGEDPKKPP-PQEGTRSGQRDQILYLFGR
turTru	MSKAQTDKETSEEKPPAERELGGEDPKKPTHPQEGTRSGQRDQILYLFGR
bosTau	${\tt MSKAQTDKETCEEKPPAERELGGEDPKKPPHPQEGTRSGHRDQILYLFGR}$
susScr	MSKAQPDKETSEEKPPAERELGGEDPKKPPHPQERTRSGQRDQILYLFGR
sorAra	MAKAQTDKESSEEKLPAEKELGAEDPKKPAHPQEGTRA-QRDQILYLFGR
eriEur	${\tt MSKAETDKELPAEKPPAERELGGEDPKRLPHSQEGTRSGQRDQILYLFGR}$
dasNo∨	${\tt MSKTQTDKETSEEKPSAERELGSEDSKKPPHSQEGTRSGQRDQILYLFGR}$
choHof	${\tt MSKTQTDKETSEEKPAAERELGNEDPKKPPHPQEGTRSVQRDQILYLFGR}$
loxAfr	MSKAQTDKETSEEKPPAERELAGEDPKKPPLEGTRSGQRDQILYLFGR
proCap	${\tt MSKAQNGKETSEEKPPVERELAGEDPKKPPQEATRSGHRDQILYLFGR}$

homSap SLDYLHPQTMVHLEGFTEQSSTTD-EPSAEQVSWEESQESPLSSGSEVPY panTro SLDYLHPQIMVHLEGFTEQSSTTD-EPSAEQVSWEESQESPLSSGGEVPY gorGor SLDYLHPQTMVHLEGFTEQSSTTD-EPSAEQVSWEESQESPLSSGSEVP. ponPyg SLDYLHPQTMVHLEGFTEQSSTTD-EPSADQVSWEESQESPLSSGSE... macMul SLDYLHPQTMVHLEGFIEQSSTTD-EPSAEQVSWEESQDSPLSSGSEVPY caljac ...DYLHPQTMVHLEGFTKQSSTTD-EPSTEQVSWEESQESPLFSGNEVPY tarSyr NLDYLHSQAVVHLEGFTEQSSTTD-EPSAEQVSWEENQEGPLSSGNDVPH otoGar NLDYLHPQTLVHLEGFTEQSSTTD-DPSTEQVSWEESQEGP-PSGNE... micMur NLDYLHPQTVVHLEGFTEQSSTTD-EPSTEQVSWEESQEGPLWSGSEVPH galVar NLDYLHPQTMVHLKGFTEQSSTTD-EPSAEQPSWEESQEGPLCSGSEVPY cynVol NLDYLHPQTMVHLKGCTEQSSTTD-EPSAEQPSWEESQEGPLCSGSEVPY uroEve .LDYLHPOTVVHLEGFTEQSSTTDSEPSAEQLSWKESREGPLPSGGEATH tupBel NLDYLHPQTVVHLEGFTEQSSTTDSEPSAEQLSWKESQAGPLPSGGEATH ptiLowLHPWAVLHLEGFTKQSSTTDSELSAEQVSWEDGQEG..... musMus SLDYLLPHSVVHLEGCTEQSSATDNELSPEQASWEDSRGHFLSSGSGMAH ${\tt ratNor \ SLDCSHRHSVLHLEGCTEQSSTTDSRLSSEHMNWEDSQGDFLSSSTGMAH}$ dipOrdVHLEGFTEQSSTTDNEPSAEQVSWEESAEGSLSV..... speTri .LDYLHPHTVVHLEGFTEQSSTTDSEPSTEQVSWEERQEDPLSRGYEVTH cavPor NLDYMHPQTVVHLEGCTKQSSTTDSEPSTEQVNWAETQKGHLSGGDEVPH oryCun SLDFLHPQTVVHLEGCTEQSSTTDNEPSAEQVGWEETQEVPLSCGSEAPH ochPri .LDFLHPQTVVHLKDVTEHSSTTDHEPSTAQLSWEGSPLVPLSGGGPVP. canFam NLDYAPPQTVVHLEGFTEQTSTTDNEPSSEQGSWEESQEGPFSGGSE... felCat NLDYAHSRTIVHLEGFTEQSSTTDNEPSLEQGGWEEGLDGALSSGSEVPY equCab SLDYLHPQTVVHLQGCTEQSSTTDSEPSAEQGSWEGSQEGPLSSG..... myoLuc NLDYLHPQTMVHLEGFTEQSSTTDSEPCAEPGRWEESQEGPLSSGNEVPY pteVam SLDYLNPQTVVHLEGFTEQSSTTDSEPSAEQGSWEENQEG..... turTru SLAYLHPQTVVHLEGFTEQSSTTDNEPSAEKGSWEESQEGPLSRGSGVPY bosTau ..DHLHPQTVVHLEGFTGQSSTTDSEPSTEQGSWEESQEGPLSRASEVPY susScr SLDCLPPOTVVHLEGFTEQSSTTD-EPSAEQGSWEESQEGPAPRRSEVPY sorAra SLDYLHPQTVVHLEGFTEQSSTTDSEPPTEPG.FREGRHEGLLSGSKET. eriEur SLDYLHPQTVVHLEGLTEQSSTTDMESSAEQDSCGNSQEVALSSGNE... dasNov NLDYLHPOTVVOLEGFTEQSSTTDTESSAEQVSWEESQEGLLSIGNDVPH choHof NLDYLHPQTVVQLEGFTEQSSTTDDEPSVEQVSWEESQEGPLSVGSEVPY loxAfr NVDYLHSQTVVHLEGFTEQSSSTDNEPSTQQGRWEESQEGPLCSGDEVPH proCap SLDCLHSPKMLPLEGVTERSSSTDREPSPQQGSWEESQEGCLSGGTEVPH echTel DLDSPQSQTVVHLEGSTEQSSSTDPEPSTWQDSWEQSQGGPLCRATKVPH Indel Supporting Scandentia+Primates (treeshrews and primates in orange)

Fig. S11. Gene ADD2

homSap	GEKETAPEEPGSPAKSAPASPVQSPAKEAETKSPLVSPSKSLE
panTro	GEKETAPEEPGSPAKSAPASPVQSPAKEAETKSPLVSPSKSLE
ponPyg	GEKETAPEEPGSPAKSAPASPVQSPAKEAETKSPLVSPSKSLE
macMul	GEKETAPEEPGSPAKSAPASPVQSPAKEAETKSPLVSPSKSLE
calJac	GEKETAPEEPGSPAKSAPPSPVQSPVKEAETKSPVVSPSKSLE
tarSyr	GEKETTTEEPGSPAKSAPASPVQSPAKEAETKSPVVSPSRSSE
otoGar	GEKETTAEEPGSPLKSAPASPVQSPAKKAETKSPVVSPSKSSE
micMur	GEKETATEEPSSPVKSAPASPAKGPAKEAETKSPVVSPSKSSE
cynVol	TAPEEPSSPVKSAPASPAQSPVK-AETKSPVVSPSKSSE
uroEve	TAPEEPGSPVKSAPASPAQSPAKEAETKSPVVSPSKSSE
tupBel	GEKETAPEEPGSPVKSAPASPAQSPAKEAETKSPVVSPSKSSE
ptiLow	TAPEEPGSPVKSAPASPAQSPAKETETKSPVVSPSKSSE
musMus	GEKDIATEKPGSPVKSTPASPVQSPSK-AGTKSPAVSPSKTSE
ratNor	GEKDAATEEPGSPVKSTPASPVQSPTR-AGTKSPAVSPSKASE
dip0rd	GEKDTATEEAGSPVKSTPASPVQSPTK-ADTKSPTISPTKSVE
speTri	GEKEAATEEPGSPEKSAPASPAQSPVK-AETKSPVVSPSKSAE
cavPor	GEKDTTTEEPGSPAKSAPASPAQSPTK-TETKSPAVSPSKSTE
oryCun	GEKETATEEPGSPVKSAPASPAQSPTK-AETKSPAVSPSKSAE
ochPri	GEKETAPEEPGSPAKSAPASPAESPTK-AETKSPAVSPSK
canFam	GEKETPAEGPGSPG-SAPASAAQSPAR-SETKSPAVSPSRSAD
felCat	GEKETTAEEPGSPVRSAPASPAQSPAK-SETKSPLVSPSKSLD
equCab	GEKETATEEPGSPVKSAPASPAQSPAK-SETKSPVVSPSKSLD
myoLuc	GEKETAAEEPGSPVKSAPASPAQSPVK-SETKSPVVSPSKSLD
pteVam	GEKETATEEPGSPVKSAPASPAQSPAK-SETKSPVVSPSKS
turTru	GEKEPAPEEPGSPVKSAPASPAQSPAK-SETKSPVGSPSKS
bosTau	GEKEPVPEEPGSPVKSAPASPAQSPAK-SEPKSPVGSPSKSVD
sorAra	GEKETAPAEPGSPVKSAPASPAQSPVK-PDTESPVVSPAKSVE
eriEur	GEKEAAPEEPGSPAKSVPASPAQSPVK-SETKSPVVSPSKSL.
dasNo∨	GEKETTTEEPGSPVKSAPASPVQSPVK-SEAKSPVVSPAKSSE
loxAfr	GEKEIATEGPESPVKSAPTSPVKSPSK-SETKSPMVSPSTTLD
proCap	GDKEIATEGPESPVKSAPTSPVKSPSK-SETKSPPVSPSK
echTel	GEKEIAPEGPGSPTKSAPTSPVQSPAK-SEAKSPVVSPSKTVE

Fig. S12

Fig. S13

Supplemental References:

- S1. Murphy WJ, et al. (2007) Genome Res 17: 413-420.
- S2. Miller W, et al. (2007) Genome Res, in press.
- S3. Murphy WJ, et al. (2001b) Science 294:2348–2351.

S4. Thompson, JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) *Nucleic Acids Res* 25:4876–4882.

- S5. Murphy WJ, et al. (2001a) Nature 409: 614-618.
- S6. Eizirik E, Murphy WJ, Springer MS, O'Brien SJ (2004) in Anthropoid Origins: New Visions,
- eds Ross CF, Kay RF (Kluwer Academic/Plenum Publishers, New York), pp 45-64.
- S7. Poux C, Chevret P, Huchon D, De Jong WW, Douzery EJP (2006) Syst Biol 55:228-44.
- S8. Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ (2005) *Science* 307:580–584.
- S9. Posada D, Crandall KA (1998) Bioinformatics 19:301-302.
- S10. Swofford DL (2003) PAUP* (Sinauer Associates, Sunderland, MA).
- S11. Ronquist F, Huelsenbeck JP (2003) Bioinformatics 19:1572–1574.
- S12. Waddell, PJ, Kishino, H, Ota, R. Genome Inform. 12, 141 (2001).
- S13. Shimodaira H, Hasegawa M (1999) Mol. Biol Evol. 16:1114–1116.
- S14. Thorne JL, Kishino H, Painter IS (1998) Mol Biol Evol 15:1647-1657.
- S15. Thorne JL, Kishino H (2002) Syst Biol 51:689-702.
- S16. Felsenstein J (1984) Evolution 38:16–24.
- S17. McKenna MC, Bell SK (1997) *Classification of Mammals Above the Species Level*. (Columbia University Press).
- S18. Steiper ME & Young NM (2006) Mol. Phylogenet. Evol. 41: 384–394.
- S19. Bloch JI, et al. (2007) Proc. Natl. Acad. Sci. USA. 104: 1159-1164.