28-Way Vertebrate Alignment and Conservation Track in the UCSC Genome Browser

Miller, Rosenbloom, Hardison, Hou, Taylor, Raney, Burhans, King, Baertsch, Blankenberg, Kosakovsky Pond, Nekrutenko, Giardine, Harris, Tyekucheva, Diekhans, Pringle, Murphy, Lesk, Weinstock, Lindblad-Toh, Gibbs, Lander, Siepel, Haussler, Kent

The 28-way alignment. Figure S1 augments Figure 1 (main text) by explicitly giving the branch lengths.

Figure S1. Phylogenetic tree of species in the 28-way alignment, giving the average number of substitutions per site on each branch.

 Table S1. Additional information about the species in the 28-way alignment.

Dist = Distance from human computed from branch lengths of 4d tree

(substitutions per 100mya)

Align = %Human bases that chain blocks of this species covers

Covg = Assembly sequencing coverage

Filter: N = none, S = syntenic, R = reciprocal best

Species	Common	Dist	Align	Covg	Filter	UCSC ID	Sequencing Center, ID
	Name						
Homo sapiens	human	0.0	100.0%	F	Ν	hg18	Mar 2006 NCBI Build 36.1
Pan troglodytes	chimpanzee	13.5	94.9%	6X	S	panTro2	Mar 2006 Chimp GSC Build 2.1
Macaca mulatta	rhesus	63.9	85.6%	5.1X	S	rheMac2	Jan 2006 Macaque GSC V1.0
Otolemur garnetti	bushbaby	25.6	44.6%	2X	R	otoGar1	Dec 2006 Broad 1.0
Tupaia belangeri	tree shrew	28.4	37.3%	1.5X	R	tupBel1	Dec 2006 Broad 1.0
Equus caballus	horse	28.5	57.1%	6.8X	S	equCab1	Feb 2007 Broad 1.0
Dasypus novemcinctus	armadillo	31.9	32.2%	2X	R	dasNov1	May 2005 Broad 1.0
Felis catus	cat	33.2	35.9%	2X	R	felCat3	Mar 2006 Broad 3.0
Canis familiaris	dog	33.5	52.9%	7.6X	S	canFam2	May 2005 Broad 2.0
Loxodonta africana	elephant	33.8	34.4%	2X	R	loxAfr1	May 2006 Broad 1.0
Bos taurus	cow	34.2	46.7%	7.1X	S	bosTau3	Aug 2006 Baylor 3.1
Oryctolagus cuniculus	rabbit	35.0	34.0%	2X	R	oryCun1	May 2005 Broad 1.0
Cavia porcellus	guinea pig	37.9	29.7%	2X	R	cavPor2	Oct 2005 Broad 2.0
Erinaceus europaeus	hedgehog	43.4	19.6%	2X	R	eriEur1	June 2006 Broad 1.0
Mus musculus	mouse	45.3	34.5%	F	S	mm8	Feb 2006 NCBI Build 36
Sorex araneus	shrew	46.0	20.1%	2X	R	sorAral	June 2006 Broad 1.0
Rattus norvegicus	rat	46.1	32.9%	7X	S	rn4	Nov 2004 Baylor v3.4
Echinops telfairi	tenrec	46.8	23.6%	2X	R	echTel1	July 2006 Broad 1.0
Monodelphis domestica	opossum	71.1	12.4%	6.5X	S	monDom4	Jan 2006 Broad 4.0
Ornithorhychus anatinus	platypus	96.7	7.9%	6X	Ν	ornAnal	Dec 2006 WUSTL 6.0
Gallus gallus	chicken	108.7	3.6%	6.6X	Ν	galGal3	May 2006 Chicken GSC v2.1
Anolis carolinensis	lizard	120.6	4.8%	6.8X	Ν	anoCar1	Jan 2007 Broad 1.0
Xenopus tropicalis	frog	152.8	2.6%	7.9X	N	xenTro2	Aug 2005 JGI 4.1
Danio rerio	zebrafish	181.4	1.9%	6.5X	N	danRer4	Mar 2006 Sanger Zv6

Gasterosteus aculeatus	stickleback	182.9	2.0%	6X	Ν	gasAcu1	Feb 2006 Broad 1.0
Tetraodon nigroviridis	tetraodon	185.2	2.0%	7.9X	Ν	tetNig1	Feb 2004 Genoscope/Broad V7
Takifugu rubripes	fugu	188.8	1.8%	8.5X	Ν	fr2	Oct 2004 JGI 4.0
Oryzias latipes	medaka	200.2	2.0%	6.7X	Ν	oryLatl	Oct 2005 NIG 1.0

Quality values in the 28-way alignment. We added sequence quality scores, represented as extra MAF rows, to the alignment for twenty of the twenty-eight species. The quality values are based on data provided by the organization that assembled each genome. We compressed the data so that each quality value is represented by a single character and emphasized low quality values (our real concern) with the following formula:

min(floor(Original Quality Value/5), 9)

The relationship between the original quality value for each base and the value in the 28way alignment is summarized in the following table:

Character in	Original	Probability of Error
28-way	Quality	
alignment	Value	
0	$0 \le Q \le 5$	0.3162 < P <= 1
1	$5 \le Q \le 10$	0.1 < P <= 0.3162
2	$10 \le Q \le 15$	0.03162 < P <= 0.1
3	$15 \le Q \le 20$	0.01 < P <= 0.03162
4	$20 \le Q \le 25$	0.003162 < P <= 0.01
5	$25 \le Q \le 30$	0.001 < P <= 0.003162
6	30 <= Q < 35	0.0003162 < P <= 0.001
7	$35 \le Q \le 40$	0.0001 < P <= 0.0003162

In addition, special characters are used to indicate that the base has been edited by hand, namely `F' for bases considered to be high-quality and `0' for low-quality bases. Aligned bases in an assembly gap are assigned quality `.'.

For each of the twenty species having quality data, the following table summarizes how often each of our twelve quality values is used. As expected, species with a lower sequence coverage tend to have more low-quality bases.

Common	Seq.	Total Bases	F	9	8	7	6	5	4	3	2	1	0	•
Name	Cov.													
Chimp	6.0x	2,704,068,384	0.000%	96.545%	0.336%	0.259%	0.212%	0.174%	0.150%	0.135%	0.137%	0.065%	1.981%	0.008%
Rhesus	5.1x	2,445,536,595	0.000%	96.264%	0.143%	0.568%	2.272%	0.331%	0.162%	0.110%	0.088%	0.047%	0.005%	0.011%
Bushbaby	2.0x	1,236,144,958	0.000%	77.706%	4.275%	3.815%	3.964%	3.839%	2.265%	1.937%	1.327%	0.727%	0.099%	0.045%
Tree shrew	1.5x	1,060,099,301	0.000%	79.600%	3.927%	3.453%	3.591%	3.517%	2.060%	1.754%	1.210%	0.668%	0.132%	0.087%
Rat	7.0x	944,090,409	0.000%	98.897%	0.372%	0.212%	0.126%	0.134%	0.080%	0.062%	0.045%	0.020%	0.041%	0.012%
Guinea pig	2.0x	837,174,260	0.000%	76.478%	4.972%	4.372%	4.281%	3.882%	2.239%	1.889%	1.217%	0.585%	0.056%	0.030%
Rabbit	2.0x	950,706,952	0.000%	80.638%	4.103%	3.623%	3.454%	3.188%	1.760%	1.507%	1.033%	0.587%	0.064%	0.043%
Shrew	2.0x	570,467,216	0.000%	83.845%	3.435%	3.120%	2.960%	2.586%	1.490%	1.244%	0.810%	0.399%	0.093%	0.017%
Hedgehog	2.0x	553,147,628	0.000%	84.636%	3.231%	2.916%	2.739%	2.426%	1.448%	1.245%	0.848%	0.459%	0.039%	0.014%
Dog	7.6x	1,537,051,022	0.000%	98.032%	0.789%	0.432%	0.236%	0.156%	0.102%	0.081%	0.068%	0.038%	0.062%	0.003%
Cat	2.0x	1,002,774,833	0.000%	87.929%	2.644%	2.152%	2.320%	1.903%	1.077%	0.875%	0.690%	0.302%	0.068%	0.040%
Horse	6.8x	1,643,549,942	0.000%	97.680%	0.601%	0.512%	0.394%	0.288%	0.163%	0.140%	0.095%	0.048%	0.075%	0.005%
Cow	7.1x	1,346,289,412	0.000%	99.306%	0.195%	0.114%	0.110%	0.093%	0.056%	0.046%	0.037%	0.017%	0.010%	0.014%
Armadillo	2.0x	900,934,775	0.000%	77.659%	4.596%	3.947%	3.945%	3.876%	2.116%	1.839%	1.266%	0.634%	0.069%	0.053%
Elephant	2.0x	969,022,725	0.000%	78.116%	4.598%	3.826%	3.841%	3.786%	2.068%	1.764%	1.227%	0.632%	0.085%	0.058%
Tenrec	2.0x	677,674,931	0.000%	79.719%	4.482%	3.841%	3.668%	3.292%	1.805%	1.527%	0.999%	0.516%	0.093%	0.058%
Opossum	6.5x	320,665,980	0.000%	96.901%	1.598%	0.522%	0.323%	0.227%	0.140%	0.113%	0.088%	0.046%	0.039%	0.002%
Lizard	6.8x	131,303,519	0.000%	97.367%	0.751%	0.549%	0.426%	0.305%	0.162%	0.127%	0.074%	0.034%	0.206%	0.000%
Stickleback	6.0x	52,104,953	0.000%	96.444%	0.852%	0.713%	0.580%	0.444%	0.298%	0.267%	0.190%	0.097%	0.116%	0.000%
Medaka	6.7x	46,565,709	0.000%	99.257%	0.301%	0.181%	0.091%	0.055%	0.044%	0.025%	0.020%	0.002%	0.008%	0.016%

 Table S3.
 Percentages of bases assigned various quality scores.

Insertions/deletions in coding regions. Figure S2 greatly strengthens the evidence given

in Figure 2 (main paper) to support the claim that humans diverged from dogs (and many other mammals) before they diverged from rodents. The 2-amino-acid deletion in the signal peptide of the *PRNP* gene appears to have happened only once in eutherian evolution.

MANLGCWMLFLFVATWSDLGLCKKRPKPG	Callithrix jacchus	Common marmoset
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Cebus apella	Brown capuchin monkey
MANLGCWMLVVFVATWSDLGLCKKRPKPG	Cercopithecus aethiops	Vervet monkey
MANLGCWMLVVFVATWSDLGLCKKRPKPG	Cercopithecus diana	Diana monkey
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Colobus guereza	Mantled guereza monkey
MENLGCWMLILFVATWSDIGLCKKRPKPG	Cynocephalus variegatus	Malayan flying lemur
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Gorilla gorilla	Western gorilla
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Homo sapiens	Human
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Hylobates lar	White-handed gibbon
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Macaca arctoides	Stump-tailed macaque
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Macaca fascicularis	Long-tailed macaque
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Macaca fuscata	Japanese macaque
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Macaca mulatta	Rhesus monkey
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Macaca nemestrina	Pigtail macaque
MANLGCWMLVVFVATWSDVGLCKKRPKPG	Microcebus murinus	Gray mouse lemur
MARLGCWMLVLFVATWSDIGLCKKRPKPG	Otolemur garnettii	Small-eared galago
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Pan troglodytes	Chimpanzee
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Papio hamadryas	Hamadryas baboon
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Pongo pygmaeus	Bornean orangutan
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Presbytis francoisi	Francois' langur
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Saimiri sciureus	South American squirrel monkey
MANLGCWMLVLFVATWSDLGLCKKRPKPG	Symphalangus syndactylus	Siamang gibbon
MAQLGCWLMVLFVATWSDVGLCKKRPKPG	Tupaia belangeri	Northern tree shrew
MANLGYWLLALFVTTWTDVGLCKKRPKPG	Apodemus sylvaticus	Long-tailed field mouse
MANAGCWLLVLFVATWSDTGLCKKRPKPG	Cavia porcellus	Guinea pig
MAHLSYWLLVLFVAAWSDVGLCKKRPKPG	Ochotona princeps	American pika
MANLGCWLLVLFVATWSDLGLCKKRTKPG	Dipodomys ordii	Ord's kangaroo rat
MANLSYWLLAFFVTTWTDVGLCKKRPKPG	Clethrionomys glareolus	Bank vole
MANLSYWLLALFVATWTDVGLCKKRPKPG	Cricetulus griseus	Chinese hamster
MANLSYWLLALFVATWTDVGLCKKRPKPG	Cricetulus migratorius	Gray dwarf hamster
MANLGYWLLALFVTMWTDVGLCKKRPKPG	Meriones unguiculatus	Mongolian gerbil
MANLSYWLLALFVAMWTDVGLCKKRPKPG	Mesocricetus auratus	Golden hamster
MANLGYWLLALFVTMWTDVGLCKKRPKPG	Mus musculus	House mouse
MAHLGYWMLLLFVATWSDVGLCKKRPKPG	Oryctolagus cuniculus	European rabbit
MANLGYWLLALFVTTCTDVGLCKKRPKPG	Rattus norvegicus	Brown rat
MANLGYWLLALFVTTCTDVGLCKKRPKPG	Rattus rattus	Black rat
MANLGYWLLALFVATWTDVGLCKKRPKPG	Sigmodon fulviventer	Tawny-bellied cotton rat
MANLGYWLLALFVATWTDVGLCKKRPKPG	Sigmodon hispiedis	Hispid cotton rat
MVNPGCWLLVLFVATLSDVGLCKKRPKPG	Spermophilus	13-lined ground squirrel
	tridecemlineatus	
MVNPGYWLLVLFVATLSDVGLCKKRPKPG	Sciurus vulgaris	Eurasian red squirrel
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Bos taurus	Domestic cow
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Bison bison	American bison

MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Rangifer tarandus	Caribou
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Alces alces	Eurasian elk
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Capreolus capreolus	Western roe deer
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Kobus megaceros	Nile lechwe antelope
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Connochaetes taurinus	Blue wildebeest
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Ammotragus lervia	Barbary sheep
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Hippotragus niger	Sable antelope
MVKSHMGSWILVLFVVTWSDVGLCKKRPKPG	Camelus dromedarius	Dromedary
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Capra hircus	Domestic goat
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Cervus elaphus	Elk
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Cervus elaphus nelsoni	Nelson's elk
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Dama dama	Fallow deer
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Odocoileus hemionus	Mule deer
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Odocoileus virginianus	White-tailed deer
MVKSHIGSWILVLFVAMWSDVALCKKRPKPG	Orvx leucorvx	Arabian orvx
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Ovibos moschatus	Muskox
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Ovis aries	Domestic sheep
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Ovis canadensis	Bighorn sheep
MVKSHIGGWILVLFVAAWSDIGLCKKRPKPG	Sus scrofa	Pig
MVKSHIGSWILVLFVAMWSDVALCKKRPKPG	Tragelaphus strepsiceros	Greater kudu
MVKSHIGGWILLLFVATWSDVGLCKKRPKPG	Canis lupus familiaris	Dog
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Felis catus	Domestic cat
MVKSHIGSWLLVLFVATWSDIGFCKKRPKPG	Mustela putorius	European polecat
MVKSHIGSWLLVLFVATWSDIGFCKKRPKPG	Mustela vison	American mink
MVKSHIGSWILVLFVAMWSDVGLCKKRPKPG	Ailuropoda melanoleuca	Giant panda
MVKSHVGGWILVLFVATWSDVGLCKKRPKPG	Equus caballus	Horse
MVRSHVGGWILVLFVATWSDVGLCKKRPKPG	Diceros bicornis	Black rhinoceros
MVKNHVGCWLLVLFVATWSEVGLCKKRPKPG	Erinaceus europaeus	Western European hedgehog
MVTGHLGCWLLVLFMATWSDVGLCKKRPKPG	Sorex araneus	Eurasian shrew
MVKSLVGGWILLLFVATWSDVGLCKKRPKPG	Myotis lucifugus	Little brown bat
MVKNYIGGWILVLFVATWSDVGLCKKRPKPG	Pteropus vampyrus	Large flying fox (a fruit bat)
MVKSHIANWILVLFVATWSDMGFCKKRPKPG	Tursiops truncatus	Bottlenose dolphin
MVKSHLGCWIMVLFVATWSEVGLCKKRPKPG	Cyclopes didactylus	Silky anteater
MVKGTVSCWLLVLVVAACSDMGLCKKRPKPG	Echinops telfairi	Lesser hedgehog tenrec
MVKSSLGCWILVLFVATWSDMGLCKKRPKPG	Elephas maximus	Asiatic elephant
MVKSSLGCWILVLFVATWSDMGLCKKRPKPG	Loxodonta africana	African bush elephant
MVKSSLGCWMLVLFVATWSDVGLCKKRPKPG	Procavia capensis	Rock hyrax
MMKSGLGCWILVLFVATWSDVGLCKKRPKPG	Orycteropus afer	Aardvark
MVKSGLGCWILVLFVATWSDVGVCKKRPKPG	Trichechus manatus	West Indian manatee
MVRSRVGCWLLLLFVATWSELGLCKKRPKPG	Dasypus novemcinctus	9-banded armadillo
MAKIQLGYWILALFIVTWSELGLCKKPKTRPG	Macropus eugenii	Tammer wallaby
MGKIHLGYWFLALFIMTWSDLTLCKKPKPRPG	Monodelphis domestica	Gray short-tailed opossum
MGKIQLGYWILVLFIVTWSDLGLCKKPKPRPG	Trichosurus vulpecula	Common brushtail possum
MARLLTTCCLLALLLAACTDVALSKKGKGKPS	Gallus gallus	Chicken
MAKLPGTSCLLLLLLLGADLASCKKGKGKPG	Taeniopygia guttata	Zebra finch
MGKHQMTCWLAIFLLLIQANVSLAKK-KPKPS	Anolis carolinensis	Green anole
MRRFLVTCWIAVFLILLQTDVSLSKKGKNKPG	Gekko gekko	Tokay gecko
MGRYRLTCWIVVLLVVMWSDVSFSKKGKGKGG	Trachemys scripta	Pond slider (a turtle)
MGRHLISCWIIVLFVAMWSDVSLAKKGKGKTG	Pelodiscus sinensis	Chinese softshell turtle
MPQSLWTCLVLISLICTLTVSSKKSGGGKSKTG	Xenopus laevis	African clawed frog
MLRSLWTSLVLISLVCALTVSSKKSGSGKSKTG	Xenopus tropicalis	(a related frog; model amphibian)

Figure S2. Extension of Figure 2 to include many more species.

Human-specific protein indels. Figure S3 shows the structural model that was mentioned in the main paper.

Figure S3. Model of the three dimensional conformation of the human *GFM2* gene, showing the location of a 6-bp insertion that is unique to humans. The insertion site looks unlikely to be constrained by secondary or tertiary structural interactions.

Pan-vertebrate UCEs. We studied the 481 human-rodent ultraconserved regions (Bejerano et al. 2004), looking at human-fish conservation in these regions. For each region, we computed the maximum identity percentage between human and any of the five sequenced fish (tetraodon, fugu, stickleback, medaka, and zebrafish). We then grouped the regions according to this value and looked for relationships among the annotated human genes nearest to each member in a group.

Comparing the UCEs with no conservation to fish (77 regions, 59 unique nearest genes) vs. those highly conserved to fish (>=80% identical, 127 regions, 95 genes), we found significant enrichment for two GO terms among the genes for the highly conserved UCEs

<i>p</i> -value	high vs. combined	GO term	
7.9e-4	57/89 vs. 70/131	GO:0065007	biological regulation
1.1e-3	52/89 vs. 63/131	GO:0003677	DNA binding

(Note that the denominators are reduced from 95 to 89 and 154 to 131 since GOstat does not recognize all gene/transcript names). Applying the Benjamini FDR correction to these sets raises both *p*-values to 0.28.

We also looked for relationships involving the distance to the nearest gene, and found that UCEs with no fish conservation were significantly further from genes than those with any fish conservation, and that fewer of them coincide with a gene. 59% of all UCEs coincide with a gene, while this drops to 51% for those with no fish conservation. This is under-representation with *p*-value 7.8e-2 (39/77 vs. 282/481).

For regions not intersecting with a gene, the average distance to the nearest gene is 309K bases for the regionw with zero fish-conservation, and 164K for the those above zero, an increase of 88%. This increase is dampened by the presence of a few outliers in the non-zero regions. If we instead compare median distance the ratio is 270K to 73K, an increase of 270%.

Phylogenetic extent of alignability of functional regions.

Table S4. Fits of alignability, A(x), for different classes of genomic features to decay equations as functions of phylogenetic distance, *x*, for all comparison species.

Fit to	Feature	Decay fit	a	b	c	R^2
	Class	begins with				
		comparison				
		to				
$A(x) = \mathbf{a} + \mathbf{b}^* \mathbf{e}^{(-\mathbf{c}x)}$	Background	Horse	0.01	2.10	3.74	0.99
	CodingExons	Horse	0.57	0.67	1.24	0.91
	Known Reg.	Mouse	0.006	2.04	1.63	0.97
	Regions					
	PRPs	Mouse	-0.21	1.98	1.11	0.99
	pTRRs	Horse	-0.02	1.93	2.29	0.99
	CTCF	Horse	0.03	1.80	2.87	0.98
	binding sites					
$A(x) = \mathbf{a} + \mathbf{b}^* x + \mathbf{c}^* x^2$	UCEs	Horse	0.98	0.12	-0.16	0.96

The distance, x, is the REV-modeled substitutions per 4D site along the branches from human to the other species.