
11

Computational Reconstruction of Ancestral DNA
Sequences

Mathieu Blanchette, Abdoulaye Baniré Diallo, Eric D. Green, 
Webb Miller, and David Haussler

Summary
This chapter introduces the problem of ancestral sequence reconstruction: given a set

of extant orthologous DNA genomic sequences (or even whole-genomes), together with
a phylogenetic tree relating these sequences, predict the DNA sequence of all ancestral
species in the tree. Blanchette et al. (1) have shown that for certain sets of species (in
particular, for eutherian mammals), very accurate reconstruction can be obtained. We
explain the main steps involved in this process, including multiple sequence alignment,
insertion and deletion inference, substitution inference, and gene arrangement inference.
We also describe a simulation-based procedure to assess the accuracy of the reconstructed
sequences. The whole reconstruction process is illustrated using a set of mammalian
sequences from the CFTR region.

Key Words: Ancestral DNA sequence reconstruction; multiple sequences alignment;
mammalian phylogeny; mammalian evolution; substitutions and indels reconstruction;
ancestral sequence reconstruction accuracy.

1. Introduction
Following the completion of the human genome sequence, there is now

considerable interest in obtaining a more comprehensive understanding of its
evolution (2–4). Patterns of evolutionary conservation are used to screen human
DNA mutations to predict those that will be deleterious to protein function
and to identify noncoding sequences that are under negative selection, and
hence may perform regulatory or structural functions (5–7). Long periods of
conservation followed by sudden change may provide clues to the evolution
of new human traits (8,9). All of these efforts depend, directly or indirectly,
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on reconstructing the evolutionary history of the bases in the human genome,
and hence on reconstructing the genomes of our distant ancestors.

Although some information about ancestral species has been irrevocably lost
during evolution, there is still the possibility that large regions of the genomes of
ancestral species with many modern descendants can be approximately inferred
from the genomes of modern species using a model of molecular evolution. Indeed,
it has recently been reported that in the specific case of mammalian evolution,
ancestral genome reconstruction was possible to a surprising degree of accuracy (1).

The ideal target species for a genomic reconstruction is one that has generated
a large number of independent, successful descendant lineages through a rapid
series of early speciation events. In this case, the problem can be viewed as
attempting to reconstruct an original from many independent noisy copies. In the
limit of an instantaneous radiation, the accuracy of the reconstruction approaches
100% exponentially fast as the number of copies increases. From the Cretaceous
period, a good choice for reconstruction would be the genome of the eutherian
ancestor, as this species is believed to have spawned the relatively rapid radiation
of the different lineages of modern placental mammals (10,11). This ancient
species also has the added advantage of being a human ancestor, so its reconstruc-
tion, however speculative, may shed additional light on our own evolution, perhaps
helping to explain features of the human and other modern mammalian genomes.

In this chapter, we describe the set of computational approaches and tools
that exist for reconstructing ancestral sequences and for estimating the accuracy
of such a reconstruction. This area being relatively new, there is no single tool
that performs all the steps involved in the reconstruction. Instead, tools developed
by different authors need to be used sequentially. The methods are illustrated on
a 1.8-Mb region of mammalian genomes, containing the CFTR gene, sequenced
by the ENCODE project (12).

2. Materials
2.1. Sequence Data

To reconstruct the ancestral sequences, orthologous DNA regions from as
many descendants as possible need to be compared. The more orthologous
sequences are available, the more accurate the reconstruction will be, provided
accurate evolutionary models are used. For vertebrate sequences, a good repository
of complete genome sequences is the UCSC Genome Browser (http://genome.
ucsc.edu [13]). Besides raw DNA sequences, multiple genome alignments and
various types of genome annotation are accessible from the same site.

For the purpose of this chapter, we illustrate the process of ancestral
sequence reconstruction using a 1.8-Mb region of the human genome including
the CFTR gene, together with orthologous regions from 19 other mammals
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(available from the UCSC Genome Browser). This deep coverage is not currently
available over all the genome, but only for the targeted sequencing of the
ENCODE project (12).

2.2. Phylogenetic Information

An important component of ancestral sequence reconstruction is the knowledge
of the phylogenetic relationships among the species being compared. Knowing
the correct tree topology and estimating the length of its branches are crucial
for an accurate reconstruction, as well as for estimating the accuracy of that
reconstruction through simulations. Accepted phylogenetic trees are now available
for many sets of species (see, e.g., refs. 10,14). For others, the exact phylogenetic
relationships remain unclear and need to be inferred prior to reconstruction,
using programs like Phylip (15), PAUP (16), or MrBayes (17). These tools are
also necessary to estimate the branch lengths of the phylogenetic tree using a
maximum likelihood approach.

2.3. Sequence Annotation

In some cases, functional annotation of extant sequences can be used to obtain
more accurate reconstruction of ancestral sequences. This is particularly the case
for coding region annotation and repetitive region annotation. For metazoans, a
good source of such annotations is the UCSC genome browser and the Ensembl
Genome Browser (http://www.ensembl.org).

3. Methods
This section introduces the techniques that have been developed for predict-

ing ancestral DNA sequences based on their extant descendants, and for esti-
mating the accuracy of the reconstruction. We illustrate this reconstruction
process (see also Note 1) and the type of information that can be derived from
it using a 1.8-Mb region surrounding the CFTR gene in mammals (see ref. 1
and Note 2 for more details).

3.1. Predicting Ancestral Sequences

The prediction of ancestral genomes can be divided into four main steps.
A crucial first step toward the reconstruction is to build an accurate multiple
alignments of the extant orthologous sequences, thus establishing orthology
relationships among the nucleotides of each sequence. Second, the process of
indel reconstruction determines the most likely scenario of insertions and dele-
tions that may have led to the extant sequences. Third, substitution history is
reconstructed using a maximum likelihood approach. The last step involves
dealing with genome rearrangements (inversions, transpositions, translocations,
duplications, and chromosome fusions, fissions, and duplications).
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3.1.1. Multiple Sequence Alignment

Given a set of orthologous sequences, the multiple alignment problem consists
of identifying (by aligning them together) the sets of nucleotides derived from
a common ancestor through direct inheritance or through substitution. Many
approaches have been developed to align multiple large genomic regions. Some
of the most popular approaches include programs like MAVID (18), MLAGAN
(5,19), and TBA (20). All these approaches fall under the category of progres-
sive alignment methods and require the prior knowledge of the topology of the
phylogenetic tree that relates the extant sequences compared (see Subheading
2.2.). The threaded blocks aligner (TBA) program, based on the well established
pair-wise alignment program BLASTZ (21), has been shown to be particularly
accurate for aligning mammalian sequences and is thus a tool of choice for
ancestral reconstruction for these species. The program is available at http://www.
bx.psu.edu/miller_lab/. The multiple sequence alignment problem is discussed
in more detail in Chapter 9.

3.1.2. Indel Reconstructing

Given a multiple sequence alignment of the repeat-soft-masked extant
sequences and a phylogenetic tree with known topology and branch lengths, the
next step consists of predicting, for each ancestral node in the tree, which
columns of the alignment correspond to ancestral bases and which correspond to
nucleotides inserted after the ancestor. Although the problem of parsimonious
indel inference has recently been shown to be NP-Hard (22), good heuristics
have been developed by Fredslund et al. (23), Blanchette et al. (1), and
Chindelevitch et al. (22). Currently, the only publicly available program for indel
reconstruction is the inferAncestors program based on the greedy approach of
Blanchette et al. (1). This section describes briefly how the program works.

Given a multiple alignment, all the gaps in the alignment are first marked
as unexplained. The algorithm iteratively selects the insertion or deletion,
performed along a specific edge of the tree and spanning one or more columns
of the alignment, which yields the largest number of alignment gaps explained
per unit of cost. The number of gaps explained by a deletion is the number
of unexplained gaps in the subtree above which the deletion occurs. The number of
gaps explained by an insertion is the number of unexplained gaps in the com-
plement of the subtree above which the insertion occurs. The costs can be
defined heuristically. The cost of a deletion is given by 1 + 0.01 log(L) − 0.01b,
where L is the length of the deletion and b is the length of the branch along which
the event takes place. The cost of an insertion is given by 1 + 0.01 log(L) –
0.01b – r, where r is a term that takes value 0.5 if the repetitive content of the
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segment inserted is more than 90%. Once the best insertion or deletion has been
identified, its gaps are marked as “explained.” This does not preclude them from
being part of other indels, but they will not count in their evaluation. Finally,
heuristics are used to reduce errors related to incorrect alignment, in particular
to reduce the problems caused by two repetitive regions from two distantly
related species mistakenly aligned to each other, with other species having gaps
in that region.

3.1.3. Substitutions Reconstruction

After having established which positions of the multiple alignment correspond
to bases in the ancestor, the inferAncestors program predicts which nucleotide
(A, C, G, or T) was present at each position in the ancestor using the standard
posterior probability approach (24) based on a dinucleotide substitution model in
which substitutions at two adjacent positions are independent except for CpG,
whose substitution rate to TpG is 10 times higher than those of other transitions
(25). This phase of the reconstruction relies on the availability accurate branch-
length estimates for the phylogenetic tree, which can be obtained as described
under Subheading 2.2.

3.1.4. The inferAncestors Program

The inferAncestor program, available from http://www.mcb.mcgill.ca/∼
blanchem/software, integrates the steps of indel and substitution inference. The
algorithm takes as input a multiple alignment in fasta format, together with a
phylogenetic tree in New Hampshire format. The program outputs a predicted
ancestral sequence for each internal node of the phylogenetic tree. Two other
files are outputs, describing the confidence of the prediction made for each base
of each ancestral sequence. The first describes the confidence in the prediction of
presence or absence of a base at each position of each ancestral sequence. The
second describes the confidence of the actual nucleotide (A, C, G, or T) predicted.
The inferAncestor program is written in C++ and has been tested on Linux and
Mac OS X.

3.1.5. Genome Rearrangements

To complete the inference of ancestral genomes, the ancestral DNA sequences
inferred for each block of orthologous sequences need to be ordered into a
single, contiguous genome. This problem is made challenging by the presence
of genome rearrangements (inversions, transpositions, translocations, and
duplications/losses). One of the most popular computer programs for inferring
ancestral gene arrangement is MGR ([26], http://www.cse.ucsd.edu/groups/
bioinformatics/MGR), which is described in detail in Chapter 10.
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3.2. Assessing Reconstruction Accuracy Through Simulations

This section describes a simulation-based method for assessing the accuracy
of the reconstructed ancestor. An alternate approach based on retrotransposons
is described in (1).

To assess the reconstructability of ancestral genomic sequences from their
extant descendants, the simplest method is to use simulations of sequence evolution.
Starting from a known (but synthetic) ancestral sequence, we let the sequence
evolve along the branches of the tree until the leaves are reached. The ancestral
sequence reconstruction procedure is then applied to the set of simulated leaves,
and the prediction made is compared to the known ancestral sequence.

The simulation program Simali (http://www.bx.psu.edu/miller_lab/), based
on the Rose program (27), can be used to mimic the evolution of sequences under
no selective pressure. Given a phylogenetic tree, the program simulates sequence
evolution by performing random substitutions, deletions, and insertions along
each branch, in proportion to its length. The program allows for the insertion of
retrotransposons, which is an important source of error in sequence alignment,
and thus in ancestral sequence reconstruction.

To assess the reconstructability of ancestral mammalian genomic sequences,
Blanchette et al. (1) performed a series of computational simulations of the neutral
evolution of a hypothetical ∼50 kb ancestral genomic region into orthologous
regions in 20 modern mammals (Fig. 1). The simulations are based on the
phylogenetic tree inferred by Eizirik et al. (10) on a set of genes for a large set
of mammals. Substitutions follow a context-independent HKY model (28) with
Ts/Tv = 2, p(a) = p(t) = 0.3, and p(c) = p(g) = 0.2, except that substitution rates
of CpG pairs are 10 times higher than other rates (25). Deletions are initiated at
a rate of about 0.056 times the substitution rate, their length is chosen according
to a previously reported empirical distribution (29) that ranges between 1 and
5000 nucleotides, and their starting point is uniformly distributed. Insertions occur
randomly according to a mixture model. Small insertions (of size between 1 and
20 nt) occur at half the rate of deletions, their size distribution is empirically
determined (29) and their content is a random sequence for which each nucleotide
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Fig. 1. Estimated reconstructability of ancestral mammalian sequences. Average
base-by-base error rate in the reconstruction of each simulated ancestral sequence. The
error rate shown is the sum of the percentages of bases that are missing, added, or
mismatched as a result of errors in the reconstruction, averaged over one hundred simu-
lations of sets of orthologous sequences of length approximately 50 kb. Error rates are
given first for all regions, and in parentheses for nonrepetitive regions only. The species
names at the leaves only indicate what organisms we simulated; no actual biological
sequences were used here. The tree topology and branch lengths are derived directly
from Eizirik et al. (10).

(Continued on next page)
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is chosen independently from the background distribution. They also simulate
the insertion of retrotransposons. For this they used a library of 15 different
types of transposable elements chosen to cover the large majority of repetitive
elements observed in well studied mammals (30). The rate of insertion of each
repeat varies from branch to branch, so that certain retrotransposons (such as
ALUs, SINEs B2, and BOV) are lineage-specific, whereas others (L1, LTR, and
DNA) are both present in the sequence at the root of the tree (with a range of
decaying level) and can be inserted along any branch. The code and parameters
used for our simulations are available with the Simali package.

After generating a set of simulated sequences, the sequences are first
soft-repeat-masked using RepeatMasker (31) and then aligned using one of the
methods under Subheading 3.1.1. The repeat-masked multiple alignment is
then fed into the inferAncestors program, which produces a predictiozn of the
ancestral sequence at each internal node of the phylogenetic tree. To compare
the actual ancestral sequence generated by simulations to the predicted ancestral
sequence, we align them and count the number of missing bases (those present
in the actual ancestor but not in the reconstruction), added bases (present in the
reconstruction but not in the actual ancestor), and mismatch errors (positions in the
reconstruction assigned the incorrect nucleotide). The sum of the rates of all three
types of errors, calculated separately at each ancestral node in the phyloge-
netic tree, is used to estimate the reconstructability of a given ancestor.

In the case of mammalian sequences, Blanchette et al. (1) used the above
simulation-based procedure to show that the sequence of certain mammalian
ancestors can be reconstructed with remarkable accuracy. Figure 1 shows that
under this phylogenetic tree with a relatively rapid placental mammalian radia-
tion, the neutral nonrepetitive regions of the Boreoeutherian ancestral genome
that have evolved under their simple model should be reconstructable with about
99% base-by-base accuracy from the genomes of 20 present-day mammals.
Repetitive regions are not reconstructed as accurately because they are more often
involved in misalignments, which can result in incorrect predictions. Nonetheless,
even counting errors in repetitive regions, the total accuracy is more than 98%.
The simulations suggest that even in the nonrepetitive regions, much of the
difficulty of the reconstruction problem lies in the computation of the multiple
alignment, as a reconstruction based on the correct multiple alignment derived
from the simulation itself (and thus unavailable for actual sequences) had less than
half the number of reconstruction errors. Examining reconstructions made using
smaller subsets of this set of 20 species, it was found that, including repetitive
regions, an accuracy of about 97% can be achieved using only 10 species chosen
to sample most major mammalian lineages (Fig. 2). Sampling only five of the
most slowly evolving lineages yields an accuracy of about 94%. Little is gained
with our current reconstruction procedures by adding more than 10 species
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because the risk of misalignment increases, whereas the unavoidable loss of
information in the early branches persists.

An alternate approach to assessing the accuracy of a reconstruction is through
a pseudo cross-validation procedure. Instead of reconstructing an ancestral sequ-
ence based on all the extant sequences available, do so using a (large) subset of
these species. Different subsets of species will produce slightly different ancestral
reconstructions, and the variability between these reconstructions will give an
idea of the expected error rate of the reconstruction that is based on all species.

3.3. Reconstruction of Actual Mammalian Sequences

Blanchette et al. (1) applied the reconstruction method described above to
actual high-quality sequence data from a region containing the human CFTR
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Fig. 2. Estimated reconstructability of the Boreoeutherian ancestor. Fraction of the
simulated Boreoeutherian ancestral sequence reconstructed incorrectly as a function
of the number of extant species used for the reconstruction. For each number of species
used, results are given counting all bases (left columns) and only nonrepetitive bases
(right columns). Species are added in the following order: human, cat, chipmunk, sloth,
manatee, rousette bat, mole, pig, beaver, tree shrew, horse, pangolin, mouse, armadillo,
aardvark, okapi, dog, mole-rat, rabbit, and lemur.



locus, using 18 additional orthologous mammalian genomic regions generated
by the NISC Comparative Sequencing Program ([12], www.nisc.nih.gov).
Simulations on synthetic data like those described above indicate that for the
topology and set of branch lengths for these 19 species, the ancestral sequence
that can be the most accurately reconstructed based on the sequences available
is the Boreoeutherian ancestor, and that neutrally evolving regions of this
ancestral genome can be reconstructed with an accuracy of about 96%. On a
site-specific basis, simulations suggest that more than 90% of the bases of the
predicted ancestor can be assigned confidence values greater than 99%. The
reconstructed ancestor and site-specific confidence estimates are available at
http://genome.ucsc.edu/ancestors.

Figure 3 illustrates the reconstruction in a noncoding region of the CFTR
locus that exhibits a typical level of sequence conservation. This region is
located in a 32-kb intron of the CAV1 gene, about 13 kb from the 5′-exon. The
bases in this region are relics left over from the insertion of a MER20 transposon
sometime prior to the mammalian radiation and are thus unlikely to be under
selective pressure.

Notice that despite the fact that the alignment of certain species (in particular,
mouse, rat, and hedgehog) appears somewhat unreliable, the inference of the
presence or absence of a Boreoeutherian ancestral base at a given position is
quite straightforward given the alignment, and so is, to a lesser extent, the pre-
diction of the actual ancestral base itself. The MER20 consensus is shown for
comparison. Most positions in which the reconstructed Boreoeutherian ancestral
base disagrees with the MER20 consensus are likely owing to substitutions in
this MER20 relic that predated the Boreoeutherian ancestor, since the support of the
reconstructed base is very strong in the extant species. If the MER20 consensus
sequence is used as an outgroup in the reconstruction procedure, only two bases
(indicated by a longer arrow) are reconstructed differently, indicating that the recon-
structed ancestral sequence is very stable and most of it is likely to be correct.

4. Notes
1. The accuracy of the reconstruction depends crucially on the length of the early

branches of the phylogenetic tree. In the context of the ancestral mammalian
sequence reconstruction, Blanchette et al. (1) have shown that if the major placental
lineages had diverged instantaneously, they would be able to reconstruct the simulated
Boreoeutherian ancestral sequence, including repetitive regions, with less than 1%
error. In contrast, if the early branch lengths inferred by Eirizik et al. (10) turned
out to underestimate the actual lengths by a factor of two, the error rate would jump
to 3%, and to 6% if they were underestimated by a factor of 4.

2. One of the nonintuitive results presented by Blanchette et al. (1) is the observation
that more ancient ancestral genomes can often be reconstructed more accurately
than their more recent descendants. Why exactly is this so? For simplicity, consider
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the case of reconstructing a single binary ancestral character state in the root
species (e.g., purine vs pyrimidine at a given site) under a simple model in which
the prior probability distribution on the ancestral character is uniform, substitution
rates are known, symmetric, homogeneous, and not too high, and the total branch
length in the phylogenetic tree from the root ancestor to each of the modern species
is the same (i.e., assume a molecular clock). Here each of n modern species has a
state that differs from the ancestral one with the same probability p < 1/2. If the tree
exhibits a star topology, in which each of the modern species derives directly from
the ancestor on an independent branch, then it is clear that the maximum likelihood
and Bayesian maximum a posteriori reconstructions of the ancestral character
agree, and the reconstructed state is the one that is most often observed in the
n modern species. The probability of an error in reconstruction is:

which is at most ([32,33]; Lemma 5, p. 479). This error approaches

zero exponentially fast as n increases. The star topology has a kind of “phase
transition” where the ancestor becomes highly reconstructible once enough present
day sequences are available to compensate for the length of the branches leading
back to the ancestor.
In contrast, a nonstar topology such as a binary tree that has the same total root-to-
leaf branch length and the same number n of modern species at the leaves has two
nonzero length branches from the root ancestor R leading to intermediate ancestors
A and B, and information is irrevocably lost along these two branches. No matter
how large the number n of modern descendant species derived from A and B, one
can do no better at reconstructing the state at R than if one knew for certain the state
in its immediate descendants A and B. Even with this knowledge, the accuracy of
reconstruction of R from A and B will be strictly less than 100% for all reasonable
models and nonzero branch lengths. The reconstruction gets poorer the longer the
branch lengths are to A and B. This extends to the case where the ancestor R
being reconstructed has a bounded number of independent immediate descendants
and to the case where descendants of an earlier ancestor of R (outgroups) are also
available. The long branches connecting them to the rest of the tree are why some
more recent ancestral sequences in the tree of Fig. 1 are less reconstructible than
the Boreoeutherian ancestor, which acts almost like the root of a star topology (see
ref. 34 for a discussion of optimal tree topologies for ancestral reconstructability).
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